Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Share

\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(\left(20x\right)^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Multiply both sides of the equation by 26.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(20^{2}x^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Expand \left(20x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Calculate 20 to the power of 2 and get 400.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+60^{2}x^{2}\right)=5\sqrt{3}
Expand \left(60x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+3600x^{2}\right)=5\sqrt{3}
Calculate 60 to the power of 2 and get 3600.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(4000x^{2}+5200\right)=5\sqrt{3}
Combine 400x^{2} and 3600x^{2} to get 4000x^{2}.
10x\times 13^{\frac{1}{2}}+13x^{-1}\times 13^{\frac{1}{2}}=5\sqrt{3}
Use the distributive property to multiply \frac{1}{400}x^{-1}\times 13^{\frac{1}{2}} by 4000x^{2}+5200.
10x\times 13^{\frac{1}{2}}+13^{\frac{3}{2}}x^{-1}=5\sqrt{3}
To multiply powers of the same base, add their exponents. Add 1 and \frac{1}{2} to get \frac{3}{2}.
10x\times 13^{\frac{1}{2}}+13^{\frac{3}{2}}x^{-1}-5\sqrt{3}=0
Subtract 5\sqrt{3} from both sides.
10\sqrt{13}x-5\sqrt{3}+13^{\frac{3}{2}}\times \frac{1}{x}=0
Reorder the terms.
10\sqrt{13}xx-5\sqrt{3}x+13^{\frac{3}{2}}\times 1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
10\sqrt{13}x^{2}-5\sqrt{3}x+13^{\frac{3}{2}}\times 1=0
Multiply x and x to get x^{2}.
10\sqrt{13}x^{2}-5\sqrt{3}x+13^{\frac{3}{2}}=0
Reorder the terms.
10\sqrt{13}x^{2}+\left(-5\sqrt{3}\right)x+13\sqrt{13}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{\left(-5\sqrt{3}\right)^{2}-4\times 10\sqrt{13}\times 13\sqrt{13}}}{2\times 10\sqrt{13}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10\sqrt{13} for a, -5\sqrt{3} for b, and 13\sqrt{13} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{75-4\times 10\sqrt{13}\times 13\sqrt{13}}}{2\times 10\sqrt{13}}
Square -5\sqrt{3}.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{75+\left(-40\sqrt{13}\right)\times 13\sqrt{13}}}{2\times 10\sqrt{13}}
Multiply -4 times 10\sqrt{13}.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{75-6760}}{2\times 10\sqrt{13}}
Multiply -40\sqrt{13} times 13\sqrt{13}.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{-6685}}{2\times 10\sqrt{13}}
Add 75 to -6760.
x=\frac{-\left(-5\sqrt{3}\right)±\sqrt{6685}i}{2\times 10\sqrt{13}}
Take the square root of -6685.
x=\frac{5\sqrt{3}±\sqrt{6685}i}{2\times 10\sqrt{13}}
The opposite of -5\sqrt{3} is 5\sqrt{3}.
x=\frac{5\sqrt{3}±\sqrt{6685}i}{20\sqrt{13}}
Multiply 2 times 10\sqrt{13}.
x=\frac{5\sqrt{3}+\sqrt{6685}i}{20\sqrt{13}}
Now solve the equation x=\frac{5\sqrt{3}±\sqrt{6685}i}{20\sqrt{13}} when ± is plus. Add 5\sqrt{3} to i\sqrt{6685}.
x=\frac{\sqrt{13}\left(5\sqrt{3}+\sqrt{6685}i\right)}{260}
Divide 5\sqrt{3}+i\sqrt{6685} by 20\sqrt{13}.
x=\frac{-\sqrt{6685}i+5\sqrt{3}}{20\sqrt{13}}
Now solve the equation x=\frac{5\sqrt{3}±\sqrt{6685}i}{20\sqrt{13}} when ± is minus. Subtract i\sqrt{6685} from 5\sqrt{3}.
x=\frac{\sqrt{13}\left(-\sqrt{6685}i+5\sqrt{3}\right)}{260}
Divide 5\sqrt{3}-i\sqrt{6685} by 20\sqrt{13}.
x=\frac{\sqrt{13}\left(5\sqrt{3}+\sqrt{6685}i\right)}{260} x=\frac{\sqrt{13}\left(-\sqrt{6685}i+5\sqrt{3}\right)}{260}
The equation is now solved.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(\left(20x\right)^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Multiply both sides of the equation by 26.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(20^{2}x^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Expand \left(20x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+\left(60x\right)^{2}\right)=5\sqrt{3}
Calculate 20 to the power of 2 and get 400.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+60^{2}x^{2}\right)=5\sqrt{3}
Expand \left(60x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5200+3600x^{2}\right)=5\sqrt{3}
Calculate 60 to the power of 2 and get 3600.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(4000x^{2}+5200\right)=5\sqrt{3}
Combine 400x^{2} and 3600x^{2} to get 4000x^{2}.
10x\times 13^{\frac{1}{2}}+13x^{-1}\times 13^{\frac{1}{2}}=5\sqrt{3}
Use the distributive property to multiply \frac{1}{400}x^{-1}\times 13^{\frac{1}{2}} by 4000x^{2}+5200.
10x\times 13^{\frac{1}{2}}+13^{\frac{3}{2}}x^{-1}=5\sqrt{3}
To multiply powers of the same base, add their exponents. Add 1 and \frac{1}{2} to get \frac{3}{2}.
10\sqrt{13}x+13^{\frac{3}{2}}\times \frac{1}{x}=5\sqrt{3}
Reorder the terms.
10\sqrt{13}xx+13^{\frac{3}{2}}\times 1=5\sqrt{3}x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
10\sqrt{13}x^{2}+13^{\frac{3}{2}}\times 1=5\sqrt{3}x
Multiply x and x to get x^{2}.
10\sqrt{13}x^{2}+13^{\frac{3}{2}}\times 1-5\sqrt{3}x=0
Subtract 5\sqrt{3}x from both sides.
10\sqrt{13}x^{2}+13^{\frac{3}{2}}-5\sqrt{3}x=0
Reorder the terms.
10\sqrt{13}x^{2}+\left(-5\sqrt{3}\right)x+13\sqrt{13}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10\sqrt{13}x^{2}+\left(-5\sqrt{3}\right)x+13\sqrt{13}-13\sqrt{13}=-13\sqrt{13}
Subtract 13^{\frac{3}{2}} from both sides of the equation.
10\sqrt{13}x^{2}+\left(-5\sqrt{3}\right)x=-13\sqrt{13}
Subtracting 13^{\frac{3}{2}} from itself leaves 0.
\frac{10\sqrt{13}x^{2}+\left(-5\sqrt{3}\right)x}{10\sqrt{13}}=-\frac{13\sqrt{13}}{10\sqrt{13}}
Divide both sides by 10\sqrt{13}.
x^{2}+\left(-\frac{5\sqrt{3}}{10\sqrt{13}}\right)x=-\frac{13\sqrt{13}}{10\sqrt{13}}
Dividing by 10\sqrt{13} undoes the multiplication by 10\sqrt{13}.
x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x=-\frac{13\sqrt{13}}{10\sqrt{13}}
Divide -5\sqrt{3} by 10\sqrt{13}.
x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x=-\frac{13}{10}
Divide -13\sqrt{13} by 10\sqrt{13}.
x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x+\left(-\frac{\sqrt{39}}{52}\right)^{2}=-\frac{13}{10}+\left(-\frac{\sqrt{39}}{52}\right)^{2}
Divide -\frac{\sqrt{39}}{26}, the coefficient of the x term, by 2 to get -\frac{\sqrt{39}}{52}. Then add the square of -\frac{\sqrt{39}}{52} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x+\frac{3}{208}=-\frac{13}{10}+\frac{3}{208}
Square -\frac{\sqrt{39}}{52}.
x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x+\frac{3}{208}=-\frac{1337}{1040}
Add -\frac{13}{10} to \frac{3}{208} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{\sqrt{39}}{52}\right)^{2}=-\frac{1337}{1040}
Factor x^{2}+\left(-\frac{\sqrt{39}}{26}\right)x+\frac{3}{208}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{39}}{52}\right)^{2}}=\sqrt{-\frac{1337}{1040}}
Take the square root of both sides of the equation.
x-\frac{\sqrt{39}}{52}=\frac{\sqrt{86905}i}{260} x-\frac{\sqrt{39}}{52}=-\frac{\sqrt{86905}i}{260}
Simplify.
x=\frac{\sqrt{86905}i}{260}+\frac{\sqrt{39}}{52} x=-\frac{\sqrt{86905}i}{260}+\frac{\sqrt{39}}{52}
Add \frac{\sqrt{39}}{52} to both sides of the equation.