Solve for m
m=640x+\frac{400\sqrt{39}}{13}
x\neq 0
Solve for x
x=\frac{m}{640}-\frac{5\sqrt{39}}{104}
m\neq \frac{400\sqrt{39}}{13}
Graph
Share
Copied to clipboard
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(\left(20x\right)^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Multiply both sides of the equation by 26.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(20^{2}x^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Expand \left(20x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Calculate 20 to the power of 2 and get 400.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-60^{2}x^{2}\right)=5\sqrt{3}
Expand \left(60x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-3600x^{2}\right)=5\sqrt{3}
Calculate 60 to the power of 2 and get 3600.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(-3200x^{2}+5xm\right)=5\sqrt{3}
Combine 400x^{2} and -3600x^{2} to get -3200x^{2}.
-8x\times 13^{\frac{1}{2}}+\frac{1}{80}m\times 13^{\frac{1}{2}}=5\sqrt{3}
Use the distributive property to multiply \frac{1}{400}x^{-1}\times 13^{\frac{1}{2}} by -3200x^{2}+5xm.
\frac{1}{80}m\times 13^{\frac{1}{2}}=5\sqrt{3}+8x\times 13^{\frac{1}{2}}
Add 8x\times 13^{\frac{1}{2}} to both sides.
\frac{1}{80}\sqrt{13}m=8\sqrt{13}x+5\sqrt{3}
Reorder the terms.
\frac{\sqrt{13}}{80}m=8\sqrt{13}x+5\sqrt{3}
The equation is in standard form.
\frac{80\times \frac{\sqrt{13}}{80}m}{\sqrt{13}}=\frac{80\left(8\sqrt{13}x+5\sqrt{3}\right)}{\sqrt{13}}
Divide both sides by \frac{1}{80}\sqrt{13}.
m=\frac{80\left(8\sqrt{13}x+5\sqrt{3}\right)}{\sqrt{13}}
Dividing by \frac{1}{80}\sqrt{13} undoes the multiplication by \frac{1}{80}\sqrt{13}.
m=640x+\frac{400\sqrt{39}}{13}
Divide 8\sqrt{13}x+5\sqrt{3} by \frac{1}{80}\sqrt{13}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(\left(20x\right)^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Multiply both sides of the equation by 26.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(20^{2}x^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Expand \left(20x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-\left(60x\right)^{2}\right)=5\sqrt{3}
Calculate 20 to the power of 2 and get 400.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-60^{2}x^{2}\right)=5\sqrt{3}
Expand \left(60x\right)^{2}.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(400x^{2}+5xm-3600x^{2}\right)=5\sqrt{3}
Calculate 60 to the power of 2 and get 3600.
\frac{1}{400}x^{-1}\times 13^{\frac{1}{2}}\left(-3200x^{2}+5xm\right)=5\sqrt{3}
Combine 400x^{2} and -3600x^{2} to get -3200x^{2}.
-8x\times 13^{\frac{1}{2}}+\frac{1}{80}\times 13^{\frac{1}{2}}m=5\sqrt{3}
Use the distributive property to multiply \frac{1}{400}x^{-1}\times 13^{\frac{1}{2}} by -3200x^{2}+5xm.
-8x\times 13^{\frac{1}{2}}=5\sqrt{3}-\frac{1}{80}\times 13^{\frac{1}{2}}m
Subtract \frac{1}{80}\times 13^{\frac{1}{2}}m from both sides.
-8\sqrt{13}x=5\sqrt{3}-\frac{1}{80}\sqrt{13}m
Reorder the terms.
\left(-8\sqrt{13}\right)x=-\frac{\sqrt{13}m}{80}+5\sqrt{3}
The equation is in standard form.
\frac{\left(-8\sqrt{13}\right)x}{-8\sqrt{13}}=\frac{-\frac{\sqrt{13}m}{80}+5\sqrt{3}}{-8\sqrt{13}}
Divide both sides by -8\sqrt{13}.
x=\frac{-\frac{\sqrt{13}m}{80}+5\sqrt{3}}{-8\sqrt{13}}
Dividing by -8\sqrt{13} undoes the multiplication by -8\sqrt{13}.
x=\frac{m}{640}-\frac{5\sqrt{39}}{104}
Divide 5\sqrt{3}-\frac{\sqrt{13}m}{80} by -8\sqrt{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}