Evaluate
-\frac{32y}{3xz}
Differentiate w.r.t. x
\frac{32y}{3zx^{2}}
Share
Copied to clipboard
\frac{\frac{2^{3}x^{3}\left(y^{2}\right)^{3}\left(z^{-1}\right)^{3}}{\left(4x^{3}y\right)^{0}\left(-6xy^{-1}z\right)^{-2}}}{\left(-3x^{2}y\right)^{3}}
Expand \left(2xy^{2}z^{-1}\right)^{3}.
\frac{\frac{2^{3}x^{3}y^{6}\left(z^{-1}\right)^{3}}{\left(4x^{3}y\right)^{0}\left(-6xy^{-1}z\right)^{-2}}}{\left(-3x^{2}y\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{2^{3}x^{3}y^{6}z^{-3}}{\left(4x^{3}y\right)^{0}\left(-6xy^{-1}z\right)^{-2}}}{\left(-3x^{2}y\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -1 and 3 to get -3.
\frac{\frac{8x^{3}y^{6}z^{-3}}{\left(4x^{3}y\right)^{0}\left(-6xy^{-1}z\right)^{-2}}}{\left(-3x^{2}y\right)^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{8x^{3}y^{6}z^{-3}}{1\left(-6xy^{-1}z\right)^{-2}}}{\left(-3x^{2}y\right)^{3}}
Calculate 4x^{3}y to the power of 0 and get 1.
\frac{\frac{8x^{3}y^{6}z^{-3}}{1\left(-6\right)^{-2}x^{-2}\left(y^{-1}\right)^{-2}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
Expand \left(-6xy^{-1}z\right)^{-2}.
\frac{\frac{8x^{3}y^{6}z^{-3}}{1\left(-6\right)^{-2}x^{-2}y^{2}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{\frac{8x^{3}y^{6}z^{-3}}{1\times \frac{1}{36}x^{-2}y^{2}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
Calculate -6 to the power of -2 and get \frac{1}{36}.
\frac{\frac{8x^{3}y^{6}z^{-3}}{\frac{1}{36}x^{-2}y^{2}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
Multiply 1 and \frac{1}{36} to get \frac{1}{36}.
\frac{\frac{8z^{-3}x^{3}y^{4}}{\frac{1}{36}x^{-2}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
Cancel out y^{2} in both numerator and denominator.
\frac{\frac{8z^{-3}y^{4}x^{5}}{\frac{1}{36}z^{-2}}}{\left(-3x^{2}y\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z^{1}}}{\left(-3x^{2}y\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z}}{\left(-3x^{2}y\right)^{3}}
Calculate z to the power of 1 and get z.
\frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z}}{\left(-3\right)^{3}\left(x^{2}\right)^{3}y^{3}}
Expand \left(-3x^{2}y\right)^{3}.
\frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z}}{\left(-3\right)^{3}x^{6}y^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z}}{-27x^{6}y^{3}}
Calculate -3 to the power of 3 and get -27.
\frac{8y^{4}x^{5}}{\frac{1}{36}z\left(-27\right)x^{6}y^{3}}
Express \frac{\frac{8y^{4}x^{5}}{\frac{1}{36}z}}{-27x^{6}y^{3}} as a single fraction.
\frac{8y}{-27\times \frac{1}{36}xz}
Cancel out y^{3}x^{5} in both numerator and denominator.
\frac{8y}{-\frac{3}{4}xz}
Multiply -27 and \frac{1}{36} to get -\frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}