Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2xy^{2}\right)^{3}x\left(x^{3}y^{2}\right)^{3}}{2x^{6}y^{11}y^{4}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2xy^{2}\right)^{3}x\left(x^{3}y^{2}\right)^{3}}{2x^{6}y^{15}}
To multiply powers of the same base, add their exponents. Add 11 and 4 to get 15.
\frac{\left(2xy^{2}\right)^{3}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Cancel out x in both numerator and denominator.
\frac{2^{3}x^{3}\left(y^{2}\right)^{3}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Expand \left(2xy^{2}\right)^{3}.
\frac{2^{3}x^{3}y^{6}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{8x^{3}y^{6}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{3}y^{6}\left(y^{2}\right)^{3}\left(x^{3}\right)^{3}}{2x^{5}y^{15}}
Expand \left(y^{2}x^{3}\right)^{3}.
\frac{8x^{3}y^{6}y^{6}\left(x^{3}\right)^{3}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{8x^{3}y^{6}y^{6}x^{9}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{8x^{3}y^{12}x^{9}}{2x^{5}y^{15}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{8x^{12}y^{12}}{2x^{5}y^{15}}
To multiply powers of the same base, add their exponents. Add 3 and 9 to get 12.
\frac{4x^{7}}{y^{3}}
Cancel out 2x^{5}y^{12} in both numerator and denominator.
\frac{\left(2xy^{2}\right)^{3}x\left(x^{3}y^{2}\right)^{3}}{2x^{6}y^{11}y^{4}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(2xy^{2}\right)^{3}x\left(x^{3}y^{2}\right)^{3}}{2x^{6}y^{15}}
To multiply powers of the same base, add their exponents. Add 11 and 4 to get 15.
\frac{\left(2xy^{2}\right)^{3}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Cancel out x in both numerator and denominator.
\frac{2^{3}x^{3}\left(y^{2}\right)^{3}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Expand \left(2xy^{2}\right)^{3}.
\frac{2^{3}x^{3}y^{6}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{8x^{3}y^{6}\left(y^{2}x^{3}\right)^{3}}{2x^{5}y^{15}}
Calculate 2 to the power of 3 and get 8.
\frac{8x^{3}y^{6}\left(y^{2}\right)^{3}\left(x^{3}\right)^{3}}{2x^{5}y^{15}}
Expand \left(y^{2}x^{3}\right)^{3}.
\frac{8x^{3}y^{6}y^{6}\left(x^{3}\right)^{3}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{8x^{3}y^{6}y^{6}x^{9}}{2x^{5}y^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{8x^{3}y^{12}x^{9}}{2x^{5}y^{15}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{8x^{12}y^{12}}{2x^{5}y^{15}}
To multiply powers of the same base, add their exponents. Add 3 and 9 to get 12.
\frac{4x^{7}}{y^{3}}
Cancel out 2x^{5}y^{12} in both numerator and denominator.