Solve for x
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Share
Copied to clipboard
\left(2x+3\right)\left(2x-3\right)=\left(4x+1\right)\left(x-1\right)
Variable x cannot be equal to any of the values -\frac{3}{2},-\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by \left(2x+3\right)\left(4x+1\right), the least common multiple of 4x+1,2x+3.
\left(2x\right)^{2}-9=\left(4x+1\right)\left(x-1\right)
Consider \left(2x+3\right)\left(2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2^{2}x^{2}-9=\left(4x+1\right)\left(x-1\right)
Expand \left(2x\right)^{2}.
4x^{2}-9=\left(4x+1\right)\left(x-1\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-9=4x^{2}-3x-1
Use the distributive property to multiply 4x+1 by x-1 and combine like terms.
4x^{2}-9-4x^{2}=-3x-1
Subtract 4x^{2} from both sides.
-9=-3x-1
Combine 4x^{2} and -4x^{2} to get 0.
-3x-1=-9
Swap sides so that all variable terms are on the left hand side.
-3x=-9+1
Add 1 to both sides.
-3x=-8
Add -9 and 1 to get -8.
x=\frac{-8}{-3}
Divide both sides by -3.
x=\frac{8}{3}
Fraction \frac{-8}{-3} can be simplified to \frac{8}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}