Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right).
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Expand \left(2x\right)^{2}.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
Multiply 12 and \frac{1}{100} to get \frac{3}{25}.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
Use the distributive property to multiply \frac{3}{25} by x-1.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
Use the distributive property to multiply \frac{3}{25}x-\frac{3}{25} by x+4 and combine like terms.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Subtract \frac{3}{25}x^{2} from both sides.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Combine 4x^{2} and -\frac{3}{25}x^{2} to get \frac{97}{25}x^{2}.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Subtract \frac{9}{25}x from both sides.
\frac{97}{25}x^{2}-\frac{9}{25}x+\frac{12}{25}=0
Add \frac{12}{25} to both sides.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\left(-\frac{9}{25}\right)^{2}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{97}{25} for a, -\frac{9}{25} for b, and \frac{12}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Square -\frac{9}{25} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-\frac{388}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Multiply -4 times \frac{97}{25}.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81-4656}{625}}}{2\times \frac{97}{25}}
Multiply -\frac{388}{25} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{-\frac{183}{25}}}{2\times \frac{97}{25}}
Add \frac{81}{625} to -\frac{4656}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{25}\right)±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
Take the square root of -\frac{183}{25}.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
The opposite of -\frac{9}{25} is \frac{9}{25}.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}}
Multiply 2 times \frac{97}{25}.
x=\frac{\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
Now solve the equation x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} when ± is plus. Add \frac{9}{25} to \frac{i\sqrt{183}}{5}.
x=\frac{9+5\sqrt{183}i}{194}
Divide \frac{9}{25}+\frac{i\sqrt{183}}{5} by \frac{194}{25} by multiplying \frac{9}{25}+\frac{i\sqrt{183}}{5} by the reciprocal of \frac{194}{25}.
x=\frac{-\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
Now solve the equation x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} when ± is minus. Subtract \frac{i\sqrt{183}}{5} from \frac{9}{25}.
x=\frac{-5\sqrt{183}i+9}{194}
Divide \frac{9}{25}-\frac{i\sqrt{183}}{5} by \frac{194}{25} by multiplying \frac{9}{25}-\frac{i\sqrt{183}}{5} by the reciprocal of \frac{194}{25}.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
The equation is now solved.
\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right).
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Expand \left(2x\right)^{2}.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
Multiply 12 and \frac{1}{100} to get \frac{3}{25}.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
Use the distributive property to multiply \frac{3}{25} by x-1.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
Use the distributive property to multiply \frac{3}{25}x-\frac{3}{25} by x+4 and combine like terms.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Subtract \frac{3}{25}x^{2} from both sides.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Combine 4x^{2} and -\frac{3}{25}x^{2} to get \frac{97}{25}x^{2}.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Subtract \frac{9}{25}x from both sides.
\frac{\frac{97}{25}x^{2}-\frac{9}{25}x}{\frac{97}{25}}=-\frac{\frac{12}{25}}{\frac{97}{25}}
Divide both sides of the equation by \frac{97}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{9}{25}}{\frac{97}{25}}\right)x=-\frac{\frac{12}{25}}{\frac{97}{25}}
Dividing by \frac{97}{25} undoes the multiplication by \frac{97}{25}.
x^{2}-\frac{9}{97}x=-\frac{\frac{12}{25}}{\frac{97}{25}}
Divide -\frac{9}{25} by \frac{97}{25} by multiplying -\frac{9}{25} by the reciprocal of \frac{97}{25}.
x^{2}-\frac{9}{97}x=-\frac{12}{97}
Divide -\frac{12}{25} by \frac{97}{25} by multiplying -\frac{12}{25} by the reciprocal of \frac{97}{25}.
x^{2}-\frac{9}{97}x+\left(-\frac{9}{194}\right)^{2}=-\frac{12}{97}+\left(-\frac{9}{194}\right)^{2}
Divide -\frac{9}{97}, the coefficient of the x term, by 2 to get -\frac{9}{194}. Then add the square of -\frac{9}{194} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{12}{97}+\frac{81}{37636}
Square -\frac{9}{194} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{4575}{37636}
Add -\frac{12}{97} to \frac{81}{37636} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{194}\right)^{2}=-\frac{4575}{37636}
Factor x^{2}-\frac{9}{97}x+\frac{81}{37636}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{194}\right)^{2}}=\sqrt{-\frac{4575}{37636}}
Take the square root of both sides of the equation.
x-\frac{9}{194}=\frac{5\sqrt{183}i}{194} x-\frac{9}{194}=-\frac{5\sqrt{183}i}{194}
Simplify.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
Add \frac{9}{194} to both sides of the equation.