Solve for x (complex solution)
x=\frac{9+i\times 35\sqrt{39}}{1994}\approx 0.004513541+0.109616314i
x=\frac{-i\times 35\sqrt{39}+9}{1994}\approx 0.004513541-0.109616314i
Graph
Share
Copied to clipboard
\left(2x\right)^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right).
2^{2}x^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Expand \left(2x\right)^{2}.
4x^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=1.2\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{3}{250}\left(x-1\right)\left(x+4\right)
Multiply 1.2 and \frac{1}{100} to get \frac{3}{250}.
4x^{2}=\left(\frac{3}{250}x-\frac{3}{250}\right)\left(x+4\right)
Use the distributive property to multiply \frac{3}{250} by x-1.
4x^{2}=\frac{3}{250}x^{2}+\frac{9}{250}x-\frac{6}{125}
Use the distributive property to multiply \frac{3}{250}x-\frac{3}{250} by x+4 and combine like terms.
4x^{2}-\frac{3}{250}x^{2}=\frac{9}{250}x-\frac{6}{125}
Subtract \frac{3}{250}x^{2} from both sides.
\frac{997}{250}x^{2}=\frac{9}{250}x-\frac{6}{125}
Combine 4x^{2} and -\frac{3}{250}x^{2} to get \frac{997}{250}x^{2}.
\frac{997}{250}x^{2}-\frac{9}{250}x=-\frac{6}{125}
Subtract \frac{9}{250}x from both sides.
\frac{997}{250}x^{2}-\frac{9}{250}x+\frac{6}{125}=0
Add \frac{6}{125} to both sides.
x=\frac{-\left(-\frac{9}{250}\right)±\sqrt{\left(-\frac{9}{250}\right)^{2}-4\times \frac{997}{250}\times \frac{6}{125}}}{2\times \frac{997}{250}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{997}{250} for a, -\frac{9}{250} for b, and \frac{6}{125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{250}\right)±\sqrt{\frac{81}{62500}-4\times \frac{997}{250}\times \frac{6}{125}}}{2\times \frac{997}{250}}
Square -\frac{9}{250} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{9}{250}\right)±\sqrt{\frac{81}{62500}-\frac{1994}{125}\times \frac{6}{125}}}{2\times \frac{997}{250}}
Multiply -4 times \frac{997}{250}.
x=\frac{-\left(-\frac{9}{250}\right)±\sqrt{\frac{81}{62500}-\frac{11964}{15625}}}{2\times \frac{997}{250}}
Multiply -\frac{1994}{125} times \frac{6}{125} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{250}\right)±\sqrt{-\frac{1911}{2500}}}{2\times \frac{997}{250}}
Add \frac{81}{62500} to -\frac{11964}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{9}{250}\right)±\frac{7\sqrt{39}i}{50}}{2\times \frac{997}{250}}
Take the square root of -\frac{1911}{2500}.
x=\frac{\frac{9}{250}±\frac{7\sqrt{39}i}{50}}{2\times \frac{997}{250}}
The opposite of -\frac{9}{250} is \frac{9}{250}.
x=\frac{\frac{9}{250}±\frac{7\sqrt{39}i}{50}}{\frac{997}{125}}
Multiply 2 times \frac{997}{250}.
x=\frac{\frac{7\sqrt{39}i}{50}+\frac{9}{250}}{\frac{997}{125}}
Now solve the equation x=\frac{\frac{9}{250}±\frac{7\sqrt{39}i}{50}}{\frac{997}{125}} when ± is plus. Add \frac{9}{250} to \frac{7i\sqrt{39}}{50}.
x=\frac{9+35\sqrt{39}i}{1994}
Divide \frac{9}{250}+\frac{7i\sqrt{39}}{50} by \frac{997}{125} by multiplying \frac{9}{250}+\frac{7i\sqrt{39}}{50} by the reciprocal of \frac{997}{125}.
x=\frac{-\frac{7\sqrt{39}i}{50}+\frac{9}{250}}{\frac{997}{125}}
Now solve the equation x=\frac{\frac{9}{250}±\frac{7\sqrt{39}i}{50}}{\frac{997}{125}} when ± is minus. Subtract \frac{7i\sqrt{39}}{50} from \frac{9}{250}.
x=\frac{-35\sqrt{39}i+9}{1994}
Divide \frac{9}{250}-\frac{7i\sqrt{39}}{50} by \frac{997}{125} by multiplying \frac{9}{250}-\frac{7i\sqrt{39}}{50} by the reciprocal of \frac{997}{125}.
x=\frac{9+35\sqrt{39}i}{1994} x=\frac{-35\sqrt{39}i+9}{1994}
The equation is now solved.
\left(2x\right)^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right).
2^{2}x^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Expand \left(2x\right)^{2}.
4x^{2}=1.2\times 10^{-2}\left(x-1\right)\left(x+4\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=1.2\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{3}{250}\left(x-1\right)\left(x+4\right)
Multiply 1.2 and \frac{1}{100} to get \frac{3}{250}.
4x^{2}=\left(\frac{3}{250}x-\frac{3}{250}\right)\left(x+4\right)
Use the distributive property to multiply \frac{3}{250} by x-1.
4x^{2}=\frac{3}{250}x^{2}+\frac{9}{250}x-\frac{6}{125}
Use the distributive property to multiply \frac{3}{250}x-\frac{3}{250} by x+4 and combine like terms.
4x^{2}-\frac{3}{250}x^{2}=\frac{9}{250}x-\frac{6}{125}
Subtract \frac{3}{250}x^{2} from both sides.
\frac{997}{250}x^{2}=\frac{9}{250}x-\frac{6}{125}
Combine 4x^{2} and -\frac{3}{250}x^{2} to get \frac{997}{250}x^{2}.
\frac{997}{250}x^{2}-\frac{9}{250}x=-\frac{6}{125}
Subtract \frac{9}{250}x from both sides.
\frac{\frac{997}{250}x^{2}-\frac{9}{250}x}{\frac{997}{250}}=-\frac{\frac{6}{125}}{\frac{997}{250}}
Divide both sides of the equation by \frac{997}{250}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{9}{250}}{\frac{997}{250}}\right)x=-\frac{\frac{6}{125}}{\frac{997}{250}}
Dividing by \frac{997}{250} undoes the multiplication by \frac{997}{250}.
x^{2}-\frac{9}{997}x=-\frac{\frac{6}{125}}{\frac{997}{250}}
Divide -\frac{9}{250} by \frac{997}{250} by multiplying -\frac{9}{250} by the reciprocal of \frac{997}{250}.
x^{2}-\frac{9}{997}x=-\frac{12}{997}
Divide -\frac{6}{125} by \frac{997}{250} by multiplying -\frac{6}{125} by the reciprocal of \frac{997}{250}.
x^{2}-\frac{9}{997}x+\left(-\frac{9}{1994}\right)^{2}=-\frac{12}{997}+\left(-\frac{9}{1994}\right)^{2}
Divide -\frac{9}{997}, the coefficient of the x term, by 2 to get -\frac{9}{1994}. Then add the square of -\frac{9}{1994} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{997}x+\frac{81}{3976036}=-\frac{12}{997}+\frac{81}{3976036}
Square -\frac{9}{1994} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{997}x+\frac{81}{3976036}=-\frac{47775}{3976036}
Add -\frac{12}{997} to \frac{81}{3976036} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{1994}\right)^{2}=-\frac{47775}{3976036}
Factor x^{2}-\frac{9}{997}x+\frac{81}{3976036}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{1994}\right)^{2}}=\sqrt{-\frac{47775}{3976036}}
Take the square root of both sides of the equation.
x-\frac{9}{1994}=\frac{35\sqrt{39}i}{1994} x-\frac{9}{1994}=-\frac{35\sqrt{39}i}{1994}
Simplify.
x=\frac{9+35\sqrt{39}i}{1994} x=\frac{-35\sqrt{39}i+9}{1994}
Add \frac{9}{1994} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}