Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x^{3}\right)^{3}x^{6}\times 2^{2}\times 5^{3}}{\left(5^{2}\right)^{2}\times 2^{3}\times \left(3\times 2^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{\left(2x^{3}\right)^{3}x^{6}\times 2^{2}\times 5^{3}}{5^{4}\times 2^{3}\times \left(3\times 2^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{6}\times \left(2x^{3}\right)^{3}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Cancel out 2^{2}\times 5^{3} in both numerator and denominator.
\frac{x^{6}\times 2^{3}\left(x^{3}\right)^{3}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Expand \left(2x^{3}\right)^{3}.
\frac{x^{6}\times 2^{3}x^{9}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{x^{6}\times 8x^{9}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{x^{15}\times 8}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 9 to get 15.
\frac{x^{15}\times 8}{10\times \left(3\times 2^{2}\right)^{2}}
Multiply 2 and 5 to get 10.
\frac{x^{15}\times 8}{10\times \left(3\times 4\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{x^{15}\times 8}{10\times 12^{2}}
Multiply 3 and 4 to get 12.
\frac{x^{15}\times 8}{10\times 144}
Calculate 12 to the power of 2 and get 144.
\frac{x^{15}\times 8}{1440}
Multiply 10 and 144 to get 1440.
x^{15}\times \frac{1}{180}
Divide x^{15}\times 8 by 1440 to get x^{15}\times \frac{1}{180}.
\frac{\left(2x^{3}\right)^{3}x^{6}\times 2^{2}\times 5^{3}}{\left(5^{2}\right)^{2}\times 2^{3}\times \left(3\times 2^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{\left(2x^{3}\right)^{3}x^{6}\times 2^{2}\times 5^{3}}{5^{4}\times 2^{3}\times \left(3\times 2^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{6}\times \left(2x^{3}\right)^{3}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Cancel out 2^{2}\times 5^{3} in both numerator and denominator.
\frac{x^{6}\times 2^{3}\left(x^{3}\right)^{3}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Expand \left(2x^{3}\right)^{3}.
\frac{x^{6}\times 2^{3}x^{9}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{x^{6}\times 8x^{9}}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{x^{15}\times 8}{2\times 5\times \left(3\times 2^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 9 to get 15.
\frac{x^{15}\times 8}{10\times \left(3\times 2^{2}\right)^{2}}
Multiply 2 and 5 to get 10.
\frac{x^{15}\times 8}{10\times \left(3\times 4\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{x^{15}\times 8}{10\times 12^{2}}
Multiply 3 and 4 to get 12.
\frac{x^{15}\times 8}{10\times 144}
Calculate 12 to the power of 2 and get 144.
\frac{x^{15}\times 8}{1440}
Multiply 10 and 144 to get 1440.
x^{15}\times \frac{1}{180}
Divide x^{15}\times 8 by 1440 to get x^{15}\times \frac{1}{180}.