Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x^{2}\right)^{-3}\times \frac{1}{4x^{-2}}
Use the rules of exponents to simplify the expression.
2^{-3}\left(x^{2}\right)^{-3}\times \frac{1}{4}\times \frac{1}{x^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{-3}\times \frac{1}{4}\left(x^{2}\right)^{-3}\times \frac{1}{x^{-2}}
Use the Commutative Property of Multiplication.
2^{-3}\times \frac{1}{4}x^{2\left(-3\right)}x^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{-3}\times \frac{1}{4}x^{-6}x^{-2\left(-1\right)}
Multiply 2 times -3.
2^{-3}\times \frac{1}{4}x^{-6}x^{2}
Multiply -2 times -1.
2^{-3}\times \frac{1}{4}x^{-6+2}
To multiply powers of the same base, add their exponents.
2^{-3}\times \frac{1}{4}x^{-4}
Add the exponents -6 and 2.
\frac{1}{8}\times \frac{1}{4}x^{-4}
Raise 2 to the power -3.
\frac{1}{32}x^{-4}
Multiply \frac{1}{8} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\left(2x^{2}\right)^{-3}\times \frac{1}{4x^{-2}}
Use the rules of exponents to simplify the expression.
2^{-3}\left(x^{2}\right)^{-3}\times \frac{1}{4}\times \frac{1}{x^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{-3}\times \frac{1}{4}\left(x^{2}\right)^{-3}\times \frac{1}{x^{-2}}
Use the Commutative Property of Multiplication.
2^{-3}\times \frac{1}{4}x^{2\left(-3\right)}x^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{-3}\times \frac{1}{4}x^{-6}x^{-2\left(-1\right)}
Multiply 2 times -3.
2^{-3}\times \frac{1}{4}x^{-6}x^{2}
Multiply -2 times -1.
2^{-3}\times \frac{1}{4}x^{-6+2}
To multiply powers of the same base, add their exponents.
2^{-3}\times \frac{1}{4}x^{-4}
Add the exponents -6 and 2.
\frac{1}{8}\times \frac{1}{4}x^{-4}
Raise 2 to the power -3.
\frac{1}{32}x^{-4}
Multiply \frac{1}{8} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.