Evaluate
\frac{1}{32x^{4}}
Expand
\frac{1}{32x^{4}}
Graph
Share
Copied to clipboard
\left(2x^{2}\right)^{-3}\times \frac{1}{4x^{-2}}
Use the rules of exponents to simplify the expression.
2^{-3}\left(x^{2}\right)^{-3}\times \frac{1}{4}\times \frac{1}{x^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{-3}\times \frac{1}{4}\left(x^{2}\right)^{-3}\times \frac{1}{x^{-2}}
Use the Commutative Property of Multiplication.
2^{-3}\times \frac{1}{4}x^{2\left(-3\right)}x^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{-3}\times \frac{1}{4}x^{-6}x^{-2\left(-1\right)}
Multiply 2 times -3.
2^{-3}\times \frac{1}{4}x^{-6}x^{2}
Multiply -2 times -1.
2^{-3}\times \frac{1}{4}x^{-6+2}
To multiply powers of the same base, add their exponents.
2^{-3}\times \frac{1}{4}x^{-4}
Add the exponents -6 and 2.
\frac{1}{8}\times \frac{1}{4}x^{-4}
Raise 2 to the power -3.
\frac{1}{32}x^{-4}
Multiply \frac{1}{8} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\left(2x^{2}\right)^{-3}\times \frac{1}{4x^{-2}}
Use the rules of exponents to simplify the expression.
2^{-3}\left(x^{2}\right)^{-3}\times \frac{1}{4}\times \frac{1}{x^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{-3}\times \frac{1}{4}\left(x^{2}\right)^{-3}\times \frac{1}{x^{-2}}
Use the Commutative Property of Multiplication.
2^{-3}\times \frac{1}{4}x^{2\left(-3\right)}x^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{-3}\times \frac{1}{4}x^{-6}x^{-2\left(-1\right)}
Multiply 2 times -3.
2^{-3}\times \frac{1}{4}x^{-6}x^{2}
Multiply -2 times -1.
2^{-3}\times \frac{1}{4}x^{-6+2}
To multiply powers of the same base, add their exponents.
2^{-3}\times \frac{1}{4}x^{-4}
Add the exponents -6 and 2.
\frac{1}{8}\times \frac{1}{4}x^{-4}
Raise 2 to the power -3.
\frac{1}{32}x^{-4}
Multiply \frac{1}{8} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}