Solve for x
x = -\frac{118}{39} = -3\frac{1}{39} \approx -3.025641026
Graph
Share
Copied to clipboard
3\left(2x+3-\left(5x-7\right)\right)=\left(6x+11\right)\left(-8\right)
Variable x cannot be equal to -\frac{11}{6} since division by zero is not defined. Multiply both sides of the equation by 3\left(6x+11\right), the least common multiple of 6x+11,3.
3\left(2x+3-5x+7\right)=\left(6x+11\right)\left(-8\right)
To find the opposite of 5x-7, find the opposite of each term.
3\left(-3x+3+7\right)=\left(6x+11\right)\left(-8\right)
Combine 2x and -5x to get -3x.
3\left(-3x+10\right)=\left(6x+11\right)\left(-8\right)
Add 3 and 7 to get 10.
-9x+30=\left(6x+11\right)\left(-8\right)
Use the distributive property to multiply 3 by -3x+10.
-9x+30=-48x-88
Use the distributive property to multiply 6x+11 by -8.
-9x+30+48x=-88
Add 48x to both sides.
39x+30=-88
Combine -9x and 48x to get 39x.
39x=-88-30
Subtract 30 from both sides.
39x=-118
Subtract 30 from -88 to get -118.
x=\frac{-118}{39}
Divide both sides by 39.
x=-\frac{118}{39}
Fraction \frac{-118}{39} can be rewritten as -\frac{118}{39} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}