Evaluate
-\frac{64x^{2}}{45}+\frac{4x}{5}+\frac{101}{5}
Expand
-\frac{64x^{2}}{45}+\frac{4x}{5}+\frac{101}{5}
Graph
Share
Copied to clipboard
\frac{\left(2x+1\right)^{2}}{5}-\frac{x^{2}-9}{3}\times \frac{20}{3}
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{3\times 3}
Multiply \frac{x^{2}-9}{3} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(2x+1\right)^{2}}{45}-\frac{5\left(x^{2}-9\right)\times 20}{45}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 9 is 45. Multiply \frac{\left(2x+1\right)^{2}}{5} times \frac{9}{9}. Multiply \frac{\left(x^{2}-9\right)\times 20}{9} times \frac{5}{5}.
\frac{9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20}{45}
Since \frac{9\left(2x+1\right)^{2}}{45} and \frac{5\left(x^{2}-9\right)\times 20}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{36x^{2}+36x+9-100x^{2}+900}{45}
Do the multiplications in 9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20.
\frac{-64x^{2}+36x+909}{45}
Combine like terms in 36x^{2}+36x+9-100x^{2}+900.
\frac{\left(2x+1\right)^{2}}{5}-\frac{x^{2}-9}{3}\times \frac{20}{3}
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{3\times 3}
Multiply \frac{x^{2}-9}{3} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(2x+1\right)^{2}}{45}-\frac{5\left(x^{2}-9\right)\times 20}{45}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 9 is 45. Multiply \frac{\left(2x+1\right)^{2}}{5} times \frac{9}{9}. Multiply \frac{\left(x^{2}-9\right)\times 20}{9} times \frac{5}{5}.
\frac{9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20}{45}
Since \frac{9\left(2x+1\right)^{2}}{45} and \frac{5\left(x^{2}-9\right)\times 20}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{36x^{2}+36x+9-100x^{2}+900}{45}
Do the multiplications in 9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20.
\frac{-64x^{2}+36x+909}{45}
Combine like terms in 36x^{2}+36x+9-100x^{2}+900.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}