Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x+1\right)^{2}}{5}-\frac{x^{2}-9}{3}\times \frac{20}{3}
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{3\times 3}
Multiply \frac{x^{2}-9}{3} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(2x+1\right)^{2}}{45}-\frac{5\left(x^{2}-9\right)\times 20}{45}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 9 is 45. Multiply \frac{\left(2x+1\right)^{2}}{5} times \frac{9}{9}. Multiply \frac{\left(x^{2}-9\right)\times 20}{9} times \frac{5}{5}.
\frac{9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20}{45}
Since \frac{9\left(2x+1\right)^{2}}{45} and \frac{5\left(x^{2}-9\right)\times 20}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{36x^{2}+36x+9-100x^{2}+900}{45}
Do the multiplications in 9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20.
\frac{-64x^{2}+36x+909}{45}
Combine like terms in 36x^{2}+36x+9-100x^{2}+900.
\frac{\left(2x+1\right)^{2}}{5}-\frac{x^{2}-9}{3}\times \frac{20}{3}
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{3\times 3}
Multiply \frac{x^{2}-9}{3} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x+1\right)^{2}}{5}-\frac{\left(x^{2}-9\right)\times 20}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(2x+1\right)^{2}}{45}-\frac{5\left(x^{2}-9\right)\times 20}{45}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 9 is 45. Multiply \frac{\left(2x+1\right)^{2}}{5} times \frac{9}{9}. Multiply \frac{\left(x^{2}-9\right)\times 20}{9} times \frac{5}{5}.
\frac{9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20}{45}
Since \frac{9\left(2x+1\right)^{2}}{45} and \frac{5\left(x^{2}-9\right)\times 20}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{36x^{2}+36x+9-100x^{2}+900}{45}
Do the multiplications in 9\left(2x+1\right)^{2}-5\left(x^{2}-9\right)\times 20.
\frac{-64x^{2}+36x+909}{45}
Combine like terms in 36x^{2}+36x+9-100x^{2}+900.