Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2v^{4}\right)^{3}\times \frac{1}{-6v^{-2}}
Use the rules of exponents to simplify the expression.
2^{3}\left(v^{4}\right)^{3}\times \frac{1}{-6}\times \frac{1}{v^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{3}\times \frac{1}{-6}\left(v^{4}\right)^{3}\times \frac{1}{v^{-2}}
Use the Commutative Property of Multiplication.
2^{3}\times \frac{1}{-6}v^{4\times 3}v^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{3}\times \frac{1}{-6}v^{12}v^{-2\left(-1\right)}
Multiply 4 times 3.
2^{3}\times \frac{1}{-6}v^{12}v^{2}
Multiply -2 times -1.
2^{3}\times \frac{1}{-6}v^{12+2}
To multiply powers of the same base, add their exponents.
2^{3}\times \frac{1}{-6}v^{14}
Add the exponents 12 and 2.
8\times \frac{1}{-6}v^{14}
Raise 2 to the power 3.
8\left(-\frac{1}{6}\right)v^{14}
Raise -6 to the power -1.
-\frac{4}{3}v^{14}
Multiply 8 times -\frac{1}{6}.
\left(2v^{4}\right)^{3}\times \frac{1}{-6v^{-2}}
Use the rules of exponents to simplify the expression.
2^{3}\left(v^{4}\right)^{3}\times \frac{1}{-6}\times \frac{1}{v^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{3}\times \frac{1}{-6}\left(v^{4}\right)^{3}\times \frac{1}{v^{-2}}
Use the Commutative Property of Multiplication.
2^{3}\times \frac{1}{-6}v^{4\times 3}v^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{3}\times \frac{1}{-6}v^{12}v^{-2\left(-1\right)}
Multiply 4 times 3.
2^{3}\times \frac{1}{-6}v^{12}v^{2}
Multiply -2 times -1.
2^{3}\times \frac{1}{-6}v^{12+2}
To multiply powers of the same base, add their exponents.
2^{3}\times \frac{1}{-6}v^{14}
Add the exponents 12 and 2.
8\times \frac{1}{-6}v^{14}
Raise 2 to the power 3.
8\left(-\frac{1}{6}\right)v^{14}
Raise -6 to the power -1.
-\frac{4}{3}v^{14}
Multiply 8 times -\frac{1}{6}.