Evaluate
\frac{\left(n+1\right)\left(2n^{3}+n^{2}+384\right)}{6n}
Expand
\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}+64+\frac{64}{n}
Share
Copied to clipboard
\frac{2n^{3}+3n^{2}+n}{6}+128\times \frac{1}{n^{2}}\times \frac{n^{2}+n}{2}
Anything divided by one gives itself.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128}{n^{2}}\times \frac{n^{2}+n}{2}
Express 128\times \frac{1}{n^{2}} as a single fraction.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128\left(n^{2}+n\right)}{n^{2}\times 2}
Multiply \frac{128}{n^{2}} times \frac{n^{2}+n}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{64\left(n^{2}+n\right)}{n^{2}}
Cancel out 2 in both numerator and denominator.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}}+\frac{6\times 64\left(n^{2}+n\right)}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and n^{2} is 6n^{2}. Multiply \frac{2n^{3}+3n^{2}+n}{6} times \frac{n^{2}}{n^{2}}. Multiply \frac{64\left(n^{2}+n\right)}{n^{2}} times \frac{6}{6}.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right)}{6n^{2}}
Since \frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}} and \frac{6\times 64\left(n^{2}+n\right)}{6n^{2}} have the same denominator, add them by adding their numerators.
\frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}
Do the multiplications in \left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right).
\frac{2n\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{6n^{2}}
Factor the expressions that are not already factored in \frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}.
\frac{\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{3n}
Cancel out 2n in both numerator and denominator.
\frac{n^{4}+\frac{3}{2}n^{3}+192n+\frac{1}{2}n^{2}+192}{3n}
Use the distributive property to multiply n+1 by n^{3}+\frac{1}{2}n^{2}+192 and combine like terms.
\frac{2n^{3}+3n^{2}+n}{6}+128\times \frac{1}{n^{2}}\times \frac{n^{2}+n}{2}
Anything divided by one gives itself.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128}{n^{2}}\times \frac{n^{2}+n}{2}
Express 128\times \frac{1}{n^{2}} as a single fraction.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128\left(n^{2}+n\right)}{n^{2}\times 2}
Multiply \frac{128}{n^{2}} times \frac{n^{2}+n}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{64\left(n^{2}+n\right)}{n^{2}}
Cancel out 2 in both numerator and denominator.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}}+\frac{6\times 64\left(n^{2}+n\right)}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and n^{2} is 6n^{2}. Multiply \frac{2n^{3}+3n^{2}+n}{6} times \frac{n^{2}}{n^{2}}. Multiply \frac{64\left(n^{2}+n\right)}{n^{2}} times \frac{6}{6}.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right)}{6n^{2}}
Since \frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}} and \frac{6\times 64\left(n^{2}+n\right)}{6n^{2}} have the same denominator, add them by adding their numerators.
\frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}
Do the multiplications in \left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right).
\frac{2n\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{6n^{2}}
Factor the expressions that are not already factored in \frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}.
\frac{\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{3n}
Cancel out 2n in both numerator and denominator.
\frac{n^{4}+\frac{3}{2}n^{3}+192n+\frac{1}{2}n^{2}+192}{3n}
Use the distributive property to multiply n+1 by n^{3}+\frac{1}{2}n^{2}+192 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}