Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2n^{3}+3n^{2}+n}{6}+128\times \frac{1}{n^{2}}\times \frac{n^{2}+n}{2}
Anything divided by one gives itself.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128}{n^{2}}\times \frac{n^{2}+n}{2}
Express 128\times \frac{1}{n^{2}} as a single fraction.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128\left(n^{2}+n\right)}{n^{2}\times 2}
Multiply \frac{128}{n^{2}} times \frac{n^{2}+n}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{64\left(n^{2}+n\right)}{n^{2}}
Cancel out 2 in both numerator and denominator.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}}+\frac{6\times 64\left(n^{2}+n\right)}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and n^{2} is 6n^{2}. Multiply \frac{2n^{3}+3n^{2}+n}{6} times \frac{n^{2}}{n^{2}}. Multiply \frac{64\left(n^{2}+n\right)}{n^{2}} times \frac{6}{6}.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right)}{6n^{2}}
Since \frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}} and \frac{6\times 64\left(n^{2}+n\right)}{6n^{2}} have the same denominator, add them by adding their numerators.
\frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}
Do the multiplications in \left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right).
\frac{2n\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{6n^{2}}
Factor the expressions that are not already factored in \frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}.
\frac{\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{3n}
Cancel out 2n in both numerator and denominator.
\frac{n^{4}+\frac{3}{2}n^{3}+192n+\frac{1}{2}n^{2}+192}{3n}
Use the distributive property to multiply n+1 by n^{3}+\frac{1}{2}n^{2}+192 and combine like terms.
\frac{2n^{3}+3n^{2}+n}{6}+128\times \frac{1}{n^{2}}\times \frac{n^{2}+n}{2}
Anything divided by one gives itself.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128}{n^{2}}\times \frac{n^{2}+n}{2}
Express 128\times \frac{1}{n^{2}} as a single fraction.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{128\left(n^{2}+n\right)}{n^{2}\times 2}
Multiply \frac{128}{n^{2}} times \frac{n^{2}+n}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2n^{3}+3n^{2}+n}{6}+\frac{64\left(n^{2}+n\right)}{n^{2}}
Cancel out 2 in both numerator and denominator.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}}+\frac{6\times 64\left(n^{2}+n\right)}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and n^{2} is 6n^{2}. Multiply \frac{2n^{3}+3n^{2}+n}{6} times \frac{n^{2}}{n^{2}}. Multiply \frac{64\left(n^{2}+n\right)}{n^{2}} times \frac{6}{6}.
\frac{\left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right)}{6n^{2}}
Since \frac{\left(2n^{3}+3n^{2}+n\right)n^{2}}{6n^{2}} and \frac{6\times 64\left(n^{2}+n\right)}{6n^{2}} have the same denominator, add them by adding their numerators.
\frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}
Do the multiplications in \left(2n^{3}+3n^{2}+n\right)n^{2}+6\times 64\left(n^{2}+n\right).
\frac{2n\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{6n^{2}}
Factor the expressions that are not already factored in \frac{2n^{5}+3n^{4}+n^{3}+384n^{2}+384n}{6n^{2}}.
\frac{\left(n+1\right)\left(n^{3}+\frac{1}{2}n^{2}+192\right)}{3n}
Cancel out 2n in both numerator and denominator.
\frac{n^{4}+\frac{3}{2}n^{3}+192n+\frac{1}{2}n^{2}+192}{3n}
Use the distributive property to multiply n+1 by n^{3}+\frac{1}{2}n^{2}+192 and combine like terms.