Evaluate
8192m^{6}n^{17}
Expand
8192m^{6}n^{17}
Share
Copied to clipboard
\frac{2^{6}\left(m^{\frac{1}{3}}\right)^{6}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Expand \left(2m^{\frac{1}{3}}n^{\frac{5}{6}}\right)^{6}.
\frac{2^{6}m^{2}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 6 to get 2.
\frac{2^{6}m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and 6 to get 5.
\frac{64m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Calculate 2 to the power of 6 and get 64.
\frac{64m^{2}n^{5}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Expand \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}n^{-6}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}}\times \left(2mn\right)^{6}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{64n^{5}}{\frac{1}{2}n^{-6}}\times \left(2mn\right)^{6}
Cancel out m^{2} in both numerator and denominator.
\frac{64n^{11}}{\frac{1}{2}}\times \left(2mn\right)^{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
64n^{11}\times 2\times \left(2mn\right)^{6}
Divide 64n^{11} by \frac{1}{2} by multiplying 64n^{11} by the reciprocal of \frac{1}{2}.
128n^{11}\times \left(2mn\right)^{6}
Multiply 64 and 2 to get 128.
128n^{11}\times 2^{6}m^{6}n^{6}
Expand \left(2mn\right)^{6}.
128n^{11}\times 64m^{6}n^{6}
Calculate 2 to the power of 6 and get 64.
8192n^{11}m^{6}n^{6}
Multiply 128 and 64 to get 8192.
8192n^{17}m^{6}
To multiply powers of the same base, add their exponents. Add 11 and 6 to get 17.
\frac{2^{6}\left(m^{\frac{1}{3}}\right)^{6}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Expand \left(2m^{\frac{1}{3}}n^{\frac{5}{6}}\right)^{6}.
\frac{2^{6}m^{2}\left(n^{\frac{5}{6}}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 6 to get 2.
\frac{2^{6}m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and 6 to get 5.
\frac{64m^{2}n^{5}}{\left(2m^{-2}n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Calculate 2 to the power of 6 and get 64.
\frac{64m^{2}n^{5}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
Expand \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{64m^{2}n^{5}}{2^{-1}m^{2}n^{-6}}\times \left(2mn\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{64m^{2}n^{5}}{\frac{1}{2}m^{2}n^{-6}}\times \left(2mn\right)^{6}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{64n^{5}}{\frac{1}{2}n^{-6}}\times \left(2mn\right)^{6}
Cancel out m^{2} in both numerator and denominator.
\frac{64n^{11}}{\frac{1}{2}}\times \left(2mn\right)^{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
64n^{11}\times 2\times \left(2mn\right)^{6}
Divide 64n^{11} by \frac{1}{2} by multiplying 64n^{11} by the reciprocal of \frac{1}{2}.
128n^{11}\times \left(2mn\right)^{6}
Multiply 64 and 2 to get 128.
128n^{11}\times 2^{6}m^{6}n^{6}
Expand \left(2mn\right)^{6}.
128n^{11}\times 64m^{6}n^{6}
Calculate 2 to the power of 6 and get 64.
8192n^{11}m^{6}n^{6}
Multiply 128 and 64 to get 8192.
8192n^{17}m^{6}
To multiply powers of the same base, add their exponents. Add 11 and 6 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}