Evaluate
\frac{4n^{37}}{m^{25}}
Expand
\frac{4n^{37}}{m^{25}}
Share
Copied to clipboard
\frac{2^{6}\left(m^{-3}\right)^{6}\left(n^{6}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Expand \left(2m^{-3}n^{6}\right)^{6}.
\frac{2^{6}m^{-18}\left(n^{6}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply -3 and 6 to get -18.
\frac{2^{6}m^{-18}n^{36}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 6 and 6 to get 36.
\frac{64m^{-18}n^{36}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Calculate 2 to the power of 6 and get 64.
\frac{64m^{-18}n^{36}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Expand \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{-18}n^{36}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{64m^{-18}n^{36}}{2^{-1}m^{2}n^{-6}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times 2^{5}m^{5}n^{5}}
Expand \left(2mn\right)^{5}.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times 32m^{5}n^{5}}
Calculate 2 to the power of 5 and get 32.
\frac{64m^{-18}n^{36}}{16m^{2}n^{-6}m^{5}n^{5}}
Multiply \frac{1}{2} and 32 to get 16.
\frac{64m^{-18}n^{36}}{16m^{7}n^{-6}n^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{64m^{-18}n^{36}}{16m^{7}n^{-1}}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\frac{4m^{-18}n^{36}}{\frac{1}{n}m^{7}}
Cancel out 16 in both numerator and denominator.
\frac{4m^{-18}n^{37}}{m^{7}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{4n^{37}}{m^{25}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2^{6}\left(m^{-3}\right)^{6}\left(n^{6}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Expand \left(2m^{-3}n^{6}\right)^{6}.
\frac{2^{6}m^{-18}\left(n^{6}\right)^{6}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply -3 and 6 to get -18.
\frac{2^{6}m^{-18}n^{36}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 6 and 6 to get 36.
\frac{64m^{-18}n^{36}}{\left(2m^{-2}n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Calculate 2 to the power of 6 and get 64.
\frac{64m^{-18}n^{36}}{2^{-1}\left(m^{-2}\right)^{-1}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
Expand \left(2m^{-2}n^{6}\right)^{-1}.
\frac{64m^{-18}n^{36}}{2^{-1}m^{2}\left(n^{6}\right)^{-1}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
\frac{64m^{-18}n^{36}}{2^{-1}m^{2}n^{-6}\times \left(2mn\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times \left(2mn\right)^{5}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times 2^{5}m^{5}n^{5}}
Expand \left(2mn\right)^{5}.
\frac{64m^{-18}n^{36}}{\frac{1}{2}m^{2}n^{-6}\times 32m^{5}n^{5}}
Calculate 2 to the power of 5 and get 32.
\frac{64m^{-18}n^{36}}{16m^{2}n^{-6}m^{5}n^{5}}
Multiply \frac{1}{2} and 32 to get 16.
\frac{64m^{-18}n^{36}}{16m^{7}n^{-6}n^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{64m^{-18}n^{36}}{16m^{7}n^{-1}}
To multiply powers of the same base, add their exponents. Add -6 and 5 to get -1.
\frac{4m^{-18}n^{36}}{\frac{1}{n}m^{7}}
Cancel out 16 in both numerator and denominator.
\frac{4m^{-18}n^{37}}{m^{7}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{4n^{37}}{m^{25}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}