Evaluate
\frac{nm^{2}}{24p^{11}}
Expand
\frac{nm^{2}}{24p^{11}}
Share
Copied to clipboard
\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Expand \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Cancel out m^{4} in both numerator and denominator.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Calculate n to the power of 1 and get n.
\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Expand \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Cancel out m^{4} in both numerator and denominator.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Calculate n to the power of 1 and get n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}