Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Expand \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Cancel out m^{4} in both numerator and denominator.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Calculate n to the power of 1 and get n.
\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Expand \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Cancel out m^{4} in both numerator and denominator.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Calculate n to the power of 1 and get n.