Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2d^{2}e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{5}\times 12e^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 9 to get 10.
\frac{\left(2d^{2}e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 5 and 7 to get 12.
\frac{2^{4}\left(d^{2}\right)^{4}\left(e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Expand \left(2d^{2}e^{3}\right)^{4}.
\frac{2^{4}d^{8}\left(e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{2^{4}d^{8}e^{12}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{16d^{8}e^{12}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Calculate 2 to the power of 4 and get 16.
\frac{16d^{8}e^{12}\left(-8\right)^{2}d^{2}\left(e^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Expand \left(-8de^{-2}\right)^{2}.
\frac{16d^{8}e^{12}\left(-8\right)^{2}d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{16d^{8}e^{12}\times 64d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
Calculate -8 to the power of 2 and get 64.
\frac{1024d^{8}e^{12}d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
Multiply 16 and 64 to get 1024.
\frac{1024d^{10}e^{12}e^{-4}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 8 and 2 to get 10.
\frac{1024d^{10}e^{8}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 12 and -4 to get 8.
\frac{1024d^{10}e^{8}}{48d^{10}e^{12}}
Multiply 4 and 12 to get 48.
\frac{64}{3e^{4}}
Cancel out 16e^{8}d^{10} in both numerator and denominator.
\frac{\left(2d^{2}e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{5}\times 12e^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 9 to get 10.
\frac{\left(2d^{2}e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 5 and 7 to get 12.
\frac{2^{4}\left(d^{2}\right)^{4}\left(e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Expand \left(2d^{2}e^{3}\right)^{4}.
\frac{2^{4}d^{8}\left(e^{3}\right)^{4}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{2^{4}d^{8}e^{12}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{16d^{8}e^{12}\left(-8de^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Calculate 2 to the power of 4 and get 16.
\frac{16d^{8}e^{12}\left(-8\right)^{2}d^{2}\left(e^{-2}\right)^{2}}{4d^{10}e^{12}\times 12}
Expand \left(-8de^{-2}\right)^{2}.
\frac{16d^{8}e^{12}\left(-8\right)^{2}d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{16d^{8}e^{12}\times 64d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
Calculate -8 to the power of 2 and get 64.
\frac{1024d^{8}e^{12}d^{2}e^{-4}}{4d^{10}e^{12}\times 12}
Multiply 16 and 64 to get 1024.
\frac{1024d^{10}e^{12}e^{-4}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 8 and 2 to get 10.
\frac{1024d^{10}e^{8}}{4d^{10}e^{12}\times 12}
To multiply powers of the same base, add their exponents. Add 12 and -4 to get 8.
\frac{1024d^{10}e^{8}}{48d^{10}e^{12}}
Multiply 4 and 12 to get 48.
\frac{64}{3e^{4}}
Cancel out 16e^{8}d^{10} in both numerator and denominator.