Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(2a^{1}\right)^{1}\times \frac{1}{2a^{-2}}
Use the rules of exponents to simplify the expression.
2^{1}\left(a^{1}\right)^{1}\times \frac{1}{2}\times \frac{1}{a^{-2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{1}\times \frac{1}{2}\left(a^{1}\right)^{1}\times \frac{1}{a^{-2}}
Use the Commutative Property of Multiplication.
2^{1}\times \frac{1}{2}a^{1}a^{-2\left(-1\right)}
To raise a power to another power, multiply the exponents.
2^{1}\times \frac{1}{2}a^{1}a^{2}
Multiply -2 times -1.
2^{1}\times \frac{1}{2}a^{1+2}
To multiply powers of the same base, add their exponents.
2^{1}\times \frac{1}{2}a^{3}
Add the exponents 1 and 2.
2^{1-1}a^{3}
To multiply powers of the same base, add their exponents.
2^{0}a^{3}
Add the exponents 1 and -1.
1a^{3}
For any term t except 0, t^{0}=1.
a^{3}
For any term t, t\times 1=t and 1t=t.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2}{2}a^{1-\left(-2\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{3})
Do the arithmetic.
3a^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
3a^{2}
Do the arithmetic.