Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2^{-2}\left(a^{2}\right)^{-2}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{4}a^{-4}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times 2^{2}\left(a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(2a^{-3}\right)^{2}.
\frac{\frac{1}{4}a^{-4}\times 2^{2}a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{1}{4}a^{-4}\times 4a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{-4}a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Multiply \frac{1}{4} and 4 to get 1.
\frac{a^{-10}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -4 and -6 to get -10.
\frac{a^{-10}}{\left(4a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{-10}}{4^{3}\left(a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(4a^{-1}\right)^{3}.
\frac{a^{-10}}{4^{3}a^{-3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -1 and 3 to get -3.
\frac{a^{-10}}{64a^{-3}\times \left(2a\right)^{-4}}
Calculate 4 to the power of 3 and get 64.
\frac{a^{-10}}{64a^{-3}\times 2^{-4}a^{-4}}
Expand \left(2a\right)^{-4}.
\frac{a^{-10}}{64a^{-3}\times \frac{1}{16}a^{-4}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{a^{-10}}{4a^{-3}a^{-4}}
Multiply 64 and \frac{1}{16} to get 4.
\frac{a^{-10}}{4a^{-7}}
To multiply powers of the same base, add their exponents. Add -3 and -4 to get -7.
\frac{1}{4a^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{4}a^{-4}\times \left(2a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times 2^{2}\left(a^{-3}\right)^{2}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(2a^{-3}\right)^{2}.
\frac{\frac{1}{4}a^{-4}\times 2^{2}a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{\frac{1}{4}a^{-4}\times 4a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{-4}a^{-6}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Multiply \frac{1}{4} and 4 to get 1.
\frac{a^{-10}}{\left(2^{2}a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
To multiply powers of the same base, add their exponents. Add -4 and -6 to get -10.
\frac{a^{-10}}{\left(4a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{-10}}{4^{3}\left(a^{-1}\right)^{3}\times \left(2a\right)^{-4}}
Expand \left(4a^{-1}\right)^{3}.
\frac{a^{-10}}{4^{3}a^{-3}\times \left(2a\right)^{-4}}
To raise a power to another power, multiply the exponents. Multiply -1 and 3 to get -3.
\frac{a^{-10}}{64a^{-3}\times \left(2a\right)^{-4}}
Calculate 4 to the power of 3 and get 64.
\frac{a^{-10}}{64a^{-3}\times 2^{-4}a^{-4}}
Expand \left(2a\right)^{-4}.
\frac{a^{-10}}{64a^{-3}\times \frac{1}{16}a^{-4}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{a^{-10}}{4a^{-3}a^{-4}}
Multiply 64 and \frac{1}{16} to get 4.
\frac{a^{-10}}{4a^{-7}}
To multiply powers of the same base, add their exponents. Add -3 and -4 to get -7.
\frac{1}{4a^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.