Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3-4i}{\left(3-i\right)^{2}}
Calculate 2-i to the power of 2 and get 3-4i.
\frac{3-4i}{8-6i}
Calculate 3-i to the power of 2 and get 8-6i.
\frac{\left(3-4i\right)\left(8+6i\right)}{\left(8-6i\right)\left(8+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+6i.
\frac{48-14i}{100}
Do the multiplications in \frac{\left(3-4i\right)\left(8+6i\right)}{\left(8-6i\right)\left(8+6i\right)}.
\frac{12}{25}-\frac{7}{50}i
Divide 48-14i by 100 to get \frac{12}{25}-\frac{7}{50}i.
Re(\frac{3-4i}{\left(3-i\right)^{2}})
Calculate 2-i to the power of 2 and get 3-4i.
Re(\frac{3-4i}{8-6i})
Calculate 3-i to the power of 2 and get 8-6i.
Re(\frac{\left(3-4i\right)\left(8+6i\right)}{\left(8-6i\right)\left(8+6i\right)})
Multiply both numerator and denominator of \frac{3-4i}{8-6i} by the complex conjugate of the denominator, 8+6i.
Re(\frac{48-14i}{100})
Do the multiplications in \frac{\left(3-4i\right)\left(8+6i\right)}{\left(8-6i\right)\left(8+6i\right)}.
Re(\frac{12}{25}-\frac{7}{50}i)
Divide 48-14i by 100 to get \frac{12}{25}-\frac{7}{50}i.
\frac{12}{25}
The real part of \frac{12}{25}-\frac{7}{50}i is \frac{12}{25}.