Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3-4i}{\left(2+i\right)^{2}}
Calculate 2-i to the power of 2 and get 3-4i.
\frac{3-4i}{3+4i}
Calculate 2+i to the power of 2 and get 3+4i.
\frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-4i.
\frac{-7-24i}{25}
Do the multiplications in \frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}.
-\frac{7}{25}-\frac{24}{25}i
Divide -7-24i by 25 to get -\frac{7}{25}-\frac{24}{25}i.
Re(\frac{3-4i}{\left(2+i\right)^{2}})
Calculate 2-i to the power of 2 and get 3-4i.
Re(\frac{3-4i}{3+4i})
Calculate 2+i to the power of 2 and get 3+4i.
Re(\frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{3-4i}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\frac{-7-24i}{25})
Do the multiplications in \frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}.
Re(-\frac{7}{25}-\frac{24}{25}i)
Divide -7-24i by 25 to get -\frac{7}{25}-\frac{24}{25}i.
-\frac{7}{25}
The real part of -\frac{7}{25}-\frac{24}{25}i is -\frac{7}{25}.