Solve for a
a=-\frac{2}{5}=-0.4
Share
Copied to clipboard
2-a=4\left(a+1\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
2-a=4a+4
Use the distributive property to multiply 4 by a+1.
2-a-4a=4
Subtract 4a from both sides.
2-5a=4
Combine -a and -4a to get -5a.
-5a=4-2
Subtract 2 from both sides.
-5a=2
Subtract 2 from 4 to get 2.
a=\frac{2}{-5}
Divide both sides by -5.
a=-\frac{2}{5}
Fraction \frac{2}{-5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}