Evaluate
\frac{59}{17}-\frac{104}{17}i\approx 3.470588235-6.117647059i
Real Part
\frac{59}{17} = 3\frac{8}{17} = 3.4705882352941178
Share
Copied to clipboard
\frac{-21-20i}{1-4i}
Calculate 2-5i to the power of 2 and get -21-20i.
\frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{59-104i}{17}
Do the multiplications in \frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}.
\frac{59}{17}-\frac{104}{17}i
Divide 59-104i by 17 to get \frac{59}{17}-\frac{104}{17}i.
Re(\frac{-21-20i}{1-4i})
Calculate 2-5i to the power of 2 and get -21-20i.
Re(\frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{-21-20i}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{59-104i}{17})
Do the multiplications in \frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}.
Re(\frac{59}{17}-\frac{104}{17}i)
Divide 59-104i by 17 to get \frac{59}{17}-\frac{104}{17}i.
\frac{59}{17}
The real part of \frac{59}{17}-\frac{104}{17}i is \frac{59}{17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}