Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-21-20i}{1-4i}
Calculate 2-5i to the power of 2 and get -21-20i.
\frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{59-104i}{17}
Do the multiplications in \frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}.
\frac{59}{17}-\frac{104}{17}i
Divide 59-104i by 17 to get \frac{59}{17}-\frac{104}{17}i.
Re(\frac{-21-20i}{1-4i})
Calculate 2-5i to the power of 2 and get -21-20i.
Re(\frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{-21-20i}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{59-104i}{17})
Do the multiplications in \frac{\left(-21-20i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}.
Re(\frac{59}{17}-\frac{104}{17}i)
Divide 59-104i by 17 to get \frac{59}{17}-\frac{104}{17}i.
\frac{59}{17}
The real part of \frac{59}{17}-\frac{104}{17}i is \frac{59}{17}.