Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
4\left(2-3x\right)\left(3x+2\right)+4\left(3x-2\right)^{2}=40x-5\left(5x+2\right)
Multiply both sides of the equation by 20, the least common multiple of 5,4.
\left(8-12x\right)\left(3x+2\right)+4\left(3x-2\right)^{2}=40x-5\left(5x+2\right)
Use the distributive property to multiply 4 by 2-3x.
16-36x^{2}+4\left(3x-2\right)^{2}=40x-5\left(5x+2\right)
Use the distributive property to multiply 8-12x by 3x+2 and combine like terms.
16-36x^{2}+4\left(9x^{2}-12x+4\right)=40x-5\left(5x+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
16-36x^{2}+36x^{2}-48x+16=40x-5\left(5x+2\right)
Use the distributive property to multiply 4 by 9x^{2}-12x+4.
16-48x+16=40x-5\left(5x+2\right)
Combine -36x^{2} and 36x^{2} to get 0.
32-48x=40x-5\left(5x+2\right)
Add 16 and 16 to get 32.
32-48x=40x-25x-10
Use the distributive property to multiply -5 by 5x+2.
32-48x=15x-10
Combine 40x and -25x to get 15x.
32-48x-15x=-10
Subtract 15x from both sides.
32-63x=-10
Combine -48x and -15x to get -63x.
-63x=-10-32
Subtract 32 from both sides.
-63x=-42
Subtract 32 from -10 to get -42.
x=\frac{-42}{-63}
Divide both sides by -63.
x=\frac{2}{3}
Reduce the fraction \frac{-42}{-63} to lowest terms by extracting and canceling out -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}