Evaluate
\left(1-y\right)^{2}+y^{2}
Expand
2y^{2}-2y+1
Graph
Share
Copied to clipboard
\frac{\left(2-2y\right)^{2}}{4}+\frac{4y^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{4}{4}.
\frac{\left(2-2y\right)^{2}+4y^{2}}{4}
Since \frac{\left(2-2y\right)^{2}}{4} and \frac{4y^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{4-8y+4y^{2}+4y^{2}}{4}
Do the multiplications in \left(2-2y\right)^{2}+4y^{2}.
\frac{4-8y+8y^{2}}{4}
Combine like terms in 4-8y+4y^{2}+4y^{2}.
1-2y+2y^{2}
Divide each term of 4-8y+8y^{2} by 4 to get 1-2y+2y^{2}.
\frac{\left(2-2y\right)^{2}}{4}+\frac{4y^{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{4}{4}.
\frac{\left(2-2y\right)^{2}+4y^{2}}{4}
Since \frac{\left(2-2y\right)^{2}}{4} and \frac{4y^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{4-8y+4y^{2}+4y^{2}}{4}
Do the multiplications in \left(2-2y\right)^{2}+4y^{2}.
\frac{4-8y+8y^{2}}{4}
Combine like terms in 4-8y+4y^{2}+4y^{2}.
1-2y+2y^{2}
Divide each term of 4-8y+8y^{2} by 4 to get 1-2y+2y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}