Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2\left(4k+3\right)}{4k+3}-\frac{12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{4k+3}{4k+3}.
\frac{\left(\frac{2\left(4k+3\right)-12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Since \frac{2\left(4k+3\right)}{4k+3} and \frac{12}{4k+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{8k+6-12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Do the multiplications in 2\left(4k+3\right)-12.
\frac{\left(\frac{8k-6}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Combine like terms in 8k+6-12.
\frac{\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
To raise \frac{8k-6}{4k+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Express \frac{\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}}}{4} as a single fraction.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}}}{3}
To raise \frac{6k}{4k+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}\times 3}
Express \frac{\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}}}{3} as a single fraction.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{6^{2}k^{2}}{\left(4k+3\right)^{2}\times 3}
Expand \left(6k\right)^{2}.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{36k^{2}}{\left(4k+3\right)^{2}\times 3}
Calculate 6 to the power of 2 and get 36.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{12k^{2}}{\left(4k+3\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{\left(8k-6\right)^{2}}{4\left(4k+3\right)^{2}}+\frac{4\times 12k^{2}}{4\left(4k+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k+3\right)^{2}\times 4 and \left(4k+3\right)^{2} is 4\left(4k+3\right)^{2}. Multiply \frac{12k^{2}}{\left(4k+3\right)^{2}} times \frac{4}{4}.
\frac{\left(8k-6\right)^{2}+4\times 12k^{2}}{4\left(4k+3\right)^{2}}
Since \frac{\left(8k-6\right)^{2}}{4\left(4k+3\right)^{2}} and \frac{4\times 12k^{2}}{4\left(4k+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{64k^{2}-96k+36+48k^{2}}{4\left(4k+3\right)^{2}}
Do the multiplications in \left(8k-6\right)^{2}+4\times 12k^{2}.
\frac{112k^{2}-96k+36}{4\left(4k+3\right)^{2}}
Combine like terms in 64k^{2}-96k+36+48k^{2}.
\frac{4\left(28k^{2}-24k+9\right)}{4\left(4k+3\right)^{2}}
Factor the expressions that are not already factored in \frac{112k^{2}-96k+36}{4\left(4k+3\right)^{2}}.
\frac{28k^{2}-24k+9}{\left(4k+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{28k^{2}-24k+9}{16k^{2}+24k+9}
Expand \left(4k+3\right)^{2}.
\frac{\left(\frac{2\left(4k+3\right)}{4k+3}-\frac{12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{4k+3}{4k+3}.
\frac{\left(\frac{2\left(4k+3\right)-12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Since \frac{2\left(4k+3\right)}{4k+3} and \frac{12}{4k+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{8k+6-12}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Do the multiplications in 2\left(4k+3\right)-12.
\frac{\left(\frac{8k-6}{4k+3}\right)^{2}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Combine like terms in 8k+6-12.
\frac{\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}}}{4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
To raise \frac{8k-6}{4k+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\left(\frac{6k}{4k+3}\right)^{2}}{3}
Express \frac{\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}}}{4} as a single fraction.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}}}{3}
To raise \frac{6k}{4k+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}\times 3}
Express \frac{\frac{\left(6k\right)^{2}}{\left(4k+3\right)^{2}}}{3} as a single fraction.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{6^{2}k^{2}}{\left(4k+3\right)^{2}\times 3}
Expand \left(6k\right)^{2}.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{36k^{2}}{\left(4k+3\right)^{2}\times 3}
Calculate 6 to the power of 2 and get 36.
\frac{\left(8k-6\right)^{2}}{\left(4k+3\right)^{2}\times 4}+\frac{12k^{2}}{\left(4k+3\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{\left(8k-6\right)^{2}}{4\left(4k+3\right)^{2}}+\frac{4\times 12k^{2}}{4\left(4k+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k+3\right)^{2}\times 4 and \left(4k+3\right)^{2} is 4\left(4k+3\right)^{2}. Multiply \frac{12k^{2}}{\left(4k+3\right)^{2}} times \frac{4}{4}.
\frac{\left(8k-6\right)^{2}+4\times 12k^{2}}{4\left(4k+3\right)^{2}}
Since \frac{\left(8k-6\right)^{2}}{4\left(4k+3\right)^{2}} and \frac{4\times 12k^{2}}{4\left(4k+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{64k^{2}-96k+36+48k^{2}}{4\left(4k+3\right)^{2}}
Do the multiplications in \left(8k-6\right)^{2}+4\times 12k^{2}.
\frac{112k^{2}-96k+36}{4\left(4k+3\right)^{2}}
Combine like terms in 64k^{2}-96k+36+48k^{2}.
\frac{4\left(28k^{2}-24k+9\right)}{4\left(4k+3\right)^{2}}
Factor the expressions that are not already factored in \frac{112k^{2}-96k+36}{4\left(4k+3\right)^{2}}.
\frac{28k^{2}-24k+9}{\left(4k+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{28k^{2}-24k+9}{16k^{2}+24k+9}
Expand \left(4k+3\right)^{2}.