Evaluate
\frac{5852792}{746025}\approx 7.845302771
Factor
\frac{2 ^ {3} \cdot 11 \cdot 66509}{3 \cdot 5 ^ {2} \cdot 7 ^ {3} \cdot 29} = 7\frac{630617}{746025} = 7.845302771354848
Share
Copied to clipboard
\frac{\left(2-\frac{1}{5}\right)^{2}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Divide 4 by 4 to get 1.
\frac{\left(\frac{9}{5}\right)^{2}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Subtract \frac{1}{5} from 2 to get \frac{9}{5}.
\frac{\frac{81}{25}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calculate \frac{9}{5} to the power of 2 and get \frac{81}{25}.
\frac{\frac{81}{25}}{2^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Subtract 1 from 3 to get 2.
\frac{\frac{81}{25}}{\frac{1}{2}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{81}{25}\times 2+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Divide \frac{81}{25} by \frac{1}{2} by multiplying \frac{81}{25} by the reciprocal of \frac{1}{2}.
\frac{162}{25}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Multiply \frac{81}{25} and 2 to get \frac{162}{25}.
\frac{162}{25}+\frac{\left(\frac{15}{14}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Multiply \frac{6}{7} and \frac{5}{4} to get \frac{15}{14}.
\frac{162}{25}+\frac{\left(\frac{13}{14}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Subtract \frac{1}{7} from \frac{15}{14} to get \frac{13}{14}.
\frac{162}{25}+\frac{\left(\frac{10}{7}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Add \frac{13}{14} and \frac{1}{2} to get \frac{10}{7}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calculate \frac{10}{7} to the power of 3 and get \frac{1000}{343}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{\frac{1}{12}}{5}}-\frac{4\times 6+4}{6}
Multiply \frac{1}{3} and \frac{1}{4} to get \frac{1}{12}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{1}{12\times 5}}-\frac{4\times 6+4}{6}
Express \frac{\frac{1}{12}}{5} as a single fraction.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{1}{60}}-\frac{4\times 6+4}{6}
Multiply 12 and 5 to get 60.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{29}{60}}-\frac{4\times 6+4}{6}
Subtract \frac{1}{60} from \frac{1}{2} to get \frac{29}{60}.
\frac{162}{25}+\frac{1000}{343}\times \frac{60}{29}-\frac{4\times 6+4}{6}
Divide \frac{1000}{343} by \frac{29}{60} by multiplying \frac{1000}{343} by the reciprocal of \frac{29}{60}.
\frac{162}{25}+\frac{60000}{9947}-\frac{4\times 6+4}{6}
Multiply \frac{1000}{343} and \frac{60}{29} to get \frac{60000}{9947}.
\frac{3111414}{248675}-\frac{4\times 6+4}{6}
Add \frac{162}{25} and \frac{60000}{9947} to get \frac{3111414}{248675}.
\frac{3111414}{248675}-\frac{24+4}{6}
Multiply 4 and 6 to get 24.
\frac{3111414}{248675}-\frac{28}{6}
Add 24 and 4 to get 28.
\frac{3111414}{248675}-\frac{14}{3}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
\frac{5852792}{746025}
Subtract \frac{14}{3} from \frac{3111414}{248675} to get \frac{5852792}{746025}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}