Evaluate
\frac{\left(a-1\right)\left(a+2\right)}{2a\left(a+5\right)\left(a^{2}+5\right)}
Expand
\frac{a^{2}+a-2}{2\left(a^{2}+5\right)\left(a^{2}+5a\right)}
Share
Copied to clipboard
\frac{-2}{a^{2}-3a^{2}-10}\times \frac{a^{2}+a-2}{2a^{2}+10a}
Subtract 4 from 2 to get -2.
\frac{-2}{-2a^{2}-10}\times \frac{a^{2}+a-2}{2a^{2}+10a}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{-2\left(a^{2}+a-2\right)}{\left(-2a^{2}-10\right)\left(2a^{2}+10a\right)}
Multiply \frac{-2}{-2a^{2}-10} times \frac{a^{2}+a-2}{2a^{2}+10a} by multiplying numerator times numerator and denominator times denominator.
\frac{-2a^{2}-2a+4}{\left(-2a^{2}-10\right)\left(2a^{2}+10a\right)}
Use the distributive property to multiply -2 by a^{2}+a-2.
\frac{-2a^{2}-2a+4}{-4a^{4}-20a^{3}-20a^{2}-100a}
Use the distributive property to multiply -2a^{2}-10 by 2a^{2}+10a.
\frac{2\left(a+2\right)\left(-a+1\right)}{4a\left(-a-5\right)\left(a^{2}+5\right)}
Factor the expressions that are not already factored.
\frac{\left(a+2\right)\left(-a+1\right)}{2a\left(-a-5\right)\left(a^{2}+5\right)}
Cancel out 2 in both numerator and denominator.
\frac{-a^{2}-a+2}{-2a^{4}-10a^{3}-10a^{2}-50a}
Expand the expression.
\frac{-2}{a^{2}-3a^{2}-10}\times \frac{a^{2}+a-2}{2a^{2}+10a}
Subtract 4 from 2 to get -2.
\frac{-2}{-2a^{2}-10}\times \frac{a^{2}+a-2}{2a^{2}+10a}
Combine a^{2} and -3a^{2} to get -2a^{2}.
\frac{-2\left(a^{2}+a-2\right)}{\left(-2a^{2}-10\right)\left(2a^{2}+10a\right)}
Multiply \frac{-2}{-2a^{2}-10} times \frac{a^{2}+a-2}{2a^{2}+10a} by multiplying numerator times numerator and denominator times denominator.
\frac{-2a^{2}-2a+4}{\left(-2a^{2}-10\right)\left(2a^{2}+10a\right)}
Use the distributive property to multiply -2 by a^{2}+a-2.
\frac{-2a^{2}-2a+4}{-4a^{4}-20a^{3}-20a^{2}-100a}
Use the distributive property to multiply -2a^{2}-10 by 2a^{2}+10a.
\frac{2\left(a+2\right)\left(-a+1\right)}{4a\left(-a-5\right)\left(a^{2}+5\right)}
Factor the expressions that are not already factored.
\frac{\left(a+2\right)\left(-a+1\right)}{2a\left(-a-5\right)\left(a^{2}+5\right)}
Cancel out 2 in both numerator and denominator.
\frac{-a^{2}-a+2}{-2a^{4}-10a^{3}-10a^{2}-50a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}