\frac { ( 2 \frac { 5 } { 7 } - 1 \frac { 3 } { 5 } ) : 1,3 - 1 \frac { 3 } { 7 } \cdot 0,25 } { ( \frac { 2 } { 5 } - \frac { 7 } { 18 } ) \cdot 15 }
Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{\frac{\frac{14+5}{7}-\frac{1\times 5+3}{5}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Multiply 2 and 7 to get 14.
\frac{\frac{\frac{19}{7}-\frac{1\times 5+3}{5}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Add 14 and 5 to get 19.
\frac{\frac{\frac{19}{7}-\frac{5+3}{5}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Multiply 1 and 5 to get 5.
\frac{\frac{\frac{19}{7}-\frac{8}{5}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Add 5 and 3 to get 8.
\frac{\frac{\frac{95}{35}-\frac{56}{35}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Least common multiple of 7 and 5 is 35. Convert \frac{19}{7} and \frac{8}{5} to fractions with denominator 35.
\frac{\frac{\frac{95-56}{35}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Since \frac{95}{35} and \frac{56}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{39}{35}}{1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Subtract 56 from 95 to get 39.
\frac{\frac{39}{35\times 1,3}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Express \frac{\frac{39}{35}}{1,3} as a single fraction.
\frac{\frac{39}{45,5}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Multiply 35 and 1,3 to get 45,5.
\frac{\frac{390}{455}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Expand \frac{39}{45,5} by multiplying both numerator and the denominator by 10.
\frac{\frac{6}{7}-\frac{1\times 7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Reduce the fraction \frac{390}{455} to lowest terms by extracting and canceling out 65.
\frac{\frac{6}{7}-\frac{7+3}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Multiply 1 and 7 to get 7.
\frac{\frac{6}{7}-\frac{10}{7}\times 0,25}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Add 7 and 3 to get 10.
\frac{\frac{6}{7}-\frac{10}{7}\times \frac{1}{4}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Convert decimal number 0,25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{6}{7}-\frac{10\times 1}{7\times 4}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Multiply \frac{10}{7} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{6}{7}-\frac{10}{28}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Do the multiplications in the fraction \frac{10\times 1}{7\times 4}.
\frac{\frac{6}{7}-\frac{5}{14}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Reduce the fraction \frac{10}{28} to lowest terms by extracting and canceling out 2.
\frac{\frac{12}{14}-\frac{5}{14}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Least common multiple of 7 and 14 is 14. Convert \frac{6}{7} and \frac{5}{14} to fractions with denominator 14.
\frac{\frac{12-5}{14}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Since \frac{12}{14} and \frac{5}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{14}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Subtract 5 from 12 to get 7.
\frac{\frac{1}{2}}{\left(\frac{2}{5}-\frac{7}{18}\right)\times 15}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\frac{\frac{1}{2}}{\left(\frac{36}{90}-\frac{35}{90}\right)\times 15}
Least common multiple of 5 and 18 is 90. Convert \frac{2}{5} and \frac{7}{18} to fractions with denominator 90.
\frac{\frac{1}{2}}{\frac{36-35}{90}\times 15}
Since \frac{36}{90} and \frac{35}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{\frac{1}{90}\times 15}
Subtract 35 from 36 to get 1.
\frac{\frac{1}{2}}{\frac{15}{90}}
Multiply \frac{1}{90} and 15 to get \frac{15}{90}.
\frac{\frac{1}{2}}{\frac{1}{6}}
Reduce the fraction \frac{15}{90} to lowest terms by extracting and canceling out 15.
\frac{1}{2}\times 6
Divide \frac{1}{2} by \frac{1}{6} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{6}.
\frac{6}{2}
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3
Divide 6 by 2 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}