Evaluate
\frac{2475}{197}\approx 12.563451777
Factor
\frac{3 ^ {2} \cdot 5 ^ {2} \cdot 11}{197} = 12\frac{111}{197} = 12.563451776649746
Share
Copied to clipboard
\frac{\frac{14+1}{7}\times 5}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Multiply 2 and 7 to get 14.
\frac{\frac{15}{7}\times 5}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Add 14 and 1 to get 15.
\frac{\frac{15\times 5}{7}}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Express \frac{15}{7}\times 5 as a single fraction.
\frac{\frac{75}{7}}{\frac{3}{7}+\frac{2}{6}+\frac{1}{11}}
Multiply 15 and 5 to get 75.
\frac{\frac{75}{7}}{\frac{3}{7}+\frac{1}{3}+\frac{1}{11}}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{75}{7}}{\frac{9}{21}+\frac{7}{21}+\frac{1}{11}}
Least common multiple of 7 and 3 is 21. Convert \frac{3}{7} and \frac{1}{3} to fractions with denominator 21.
\frac{\frac{75}{7}}{\frac{9+7}{21}+\frac{1}{11}}
Since \frac{9}{21} and \frac{7}{21} have the same denominator, add them by adding their numerators.
\frac{\frac{75}{7}}{\frac{16}{21}+\frac{1}{11}}
Add 9 and 7 to get 16.
\frac{\frac{75}{7}}{\frac{176}{231}+\frac{21}{231}}
Least common multiple of 21 and 11 is 231. Convert \frac{16}{21} and \frac{1}{11} to fractions with denominator 231.
\frac{\frac{75}{7}}{\frac{176+21}{231}}
Since \frac{176}{231} and \frac{21}{231} have the same denominator, add them by adding their numerators.
\frac{\frac{75}{7}}{\frac{197}{231}}
Add 176 and 21 to get 197.
\frac{75}{7}\times \frac{231}{197}
Divide \frac{75}{7} by \frac{197}{231} by multiplying \frac{75}{7} by the reciprocal of \frac{197}{231}.
\frac{75\times 231}{7\times 197}
Multiply \frac{75}{7} times \frac{231}{197} by multiplying numerator times numerator and denominator times denominator.
\frac{17325}{1379}
Do the multiplications in the fraction \frac{75\times 231}{7\times 197}.
\frac{2475}{197}
Reduce the fraction \frac{17325}{1379} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}