Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\left(\frac{4+1}{2}\right)^{3}-\left(\frac{3\times 4+1}{4}\right)^{2}}{\frac{162}{16}}
Multiply 2 and 2 to get 4.
\frac{\left(\frac{5}{2}\right)^{3}-\left(\frac{3\times 4+1}{4}\right)^{2}}{\frac{162}{16}}
Add 4 and 1 to get 5.
\frac{\frac{125}{8}-\left(\frac{3\times 4+1}{4}\right)^{2}}{\frac{162}{16}}
Calculate \frac{5}{2} to the power of 3 and get \frac{125}{8}.
\frac{\frac{125}{8}-\left(\frac{12+1}{4}\right)^{2}}{\frac{162}{16}}
Multiply 3 and 4 to get 12.
\frac{\frac{125}{8}-\left(\frac{13}{4}\right)^{2}}{\frac{162}{16}}
Add 12 and 1 to get 13.
\frac{\frac{125}{8}-\frac{169}{16}}{\frac{162}{16}}
Calculate \frac{13}{4} to the power of 2 and get \frac{169}{16}.
\frac{\frac{81}{16}}{\frac{162}{16}}
Subtract \frac{169}{16} from \frac{125}{8} to get \frac{81}{16}.
\frac{\frac{81}{16}}{\frac{81}{8}}
Reduce the fraction \frac{162}{16} to lowest terms by extracting and canceling out 2.
\frac{81}{16}\times \frac{8}{81}
Divide \frac{81}{16} by \frac{81}{8} by multiplying \frac{81}{16} by the reciprocal of \frac{81}{8}.
\frac{1}{2}
Multiply \frac{81}{16} and \frac{8}{81} to get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}