Solve for a
a=\frac{31-x}{11}
x\neq -2
Solve for x
x=31-11a
a\neq 3
Graph
Share
Copied to clipboard
2+x=11\left(-a+3\right)
Variable a cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by -a+3.
2+x=-11a+33
Use the distributive property to multiply 11 by -a+3.
-11a+33=2+x
Swap sides so that all variable terms are on the left hand side.
-11a=2+x-33
Subtract 33 from both sides.
-11a=-31+x
Subtract 33 from 2 to get -31.
-11a=x-31
The equation is in standard form.
\frac{-11a}{-11}=\frac{x-31}{-11}
Divide both sides by -11.
a=\frac{x-31}{-11}
Dividing by -11 undoes the multiplication by -11.
a=\frac{31-x}{11}
Divide -31+x by -11.
a=\frac{31-x}{11}\text{, }a\neq 3
Variable a cannot be equal to 3.
2+x=11\left(-a+3\right)
Multiply both sides of the equation by -a+3.
2+x=-11a+33
Use the distributive property to multiply 11 by -a+3.
x=-11a+33-2
Subtract 2 from both sides.
x=-11a+31
Subtract 2 from 33 to get 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}