Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}}
Calculate 2+i to the power of 2 and get 3+4i.
\frac{3+4i-5}{\left(1-i\right)^{2}}
Multiply 2+i and 2-i to get 5.
\frac{-2+4i}{\left(1-i\right)^{2}}
Subtract 5 from 3+4i to get -2+4i.
\frac{-2+4i}{-2i}
Calculate 1-i to the power of 2 and get -2i.
\frac{-4-2i}{2}
Multiply both numerator and denominator by imaginary unit i.
-2-i
Divide -4-2i by 2 to get -2-i.
Re(\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}})
Calculate 2+i to the power of 2 and get 3+4i.
Re(\frac{3+4i-5}{\left(1-i\right)^{2}})
Multiply 2+i and 2-i to get 5.
Re(\frac{-2+4i}{\left(1-i\right)^{2}})
Subtract 5 from 3+4i to get -2+4i.
Re(\frac{-2+4i}{-2i})
Calculate 1-i to the power of 2 and get -2i.
Re(\frac{-4-2i}{2})
Multiply both numerator and denominator of \frac{-2+4i}{-2i} by imaginary unit i.
Re(-2-i)
Divide -4-2i by 2 to get -2-i.
-2
The real part of -2-i is -2.