Evaluate
-2-i
Real Part
-2
Share
Copied to clipboard
\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}}
Calculate 2+i to the power of 2 and get 3+4i.
\frac{3+4i-5}{\left(1-i\right)^{2}}
Multiply 2+i and 2-i to get 5.
\frac{-2+4i}{\left(1-i\right)^{2}}
Subtract 5 from 3+4i to get -2+4i.
\frac{-2+4i}{-2i}
Calculate 1-i to the power of 2 and get -2i.
\frac{-4-2i}{2}
Multiply both numerator and denominator by imaginary unit i.
-2-i
Divide -4-2i by 2 to get -2-i.
Re(\frac{3+4i-\left(2+i\right)\left(2-i\right)}{\left(1-i\right)^{2}})
Calculate 2+i to the power of 2 and get 3+4i.
Re(\frac{3+4i-5}{\left(1-i\right)^{2}})
Multiply 2+i and 2-i to get 5.
Re(\frac{-2+4i}{\left(1-i\right)^{2}})
Subtract 5 from 3+4i to get -2+4i.
Re(\frac{-2+4i}{-2i})
Calculate 1-i to the power of 2 and get -2i.
Re(\frac{-4-2i}{2})
Multiply both numerator and denominator of \frac{-2+4i}{-2i} by imaginary unit i.
Re(-2-i)
Divide -4-2i by 2 to get -2-i.
-2
The real part of -2-i is -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}