Evaluate
-3.36
Factor
-3.36
Share
Copied to clipboard
\frac{\left(2-16-0\times 115\right)\times 3}{\frac{0\times 336+1\times 5-0\times 609}{0.4}}
Add 2 and 0 to get 2.
\frac{\left(-14-0\times 115\right)\times 3}{\frac{0\times 336+1\times 5-0\times 609}{0.4}}
Subtract 16 from 2 to get -14.
\frac{\left(-14-0\right)\times 3}{\frac{0\times 336+1\times 5-0\times 609}{0.4}}
Multiply 0 and 115 to get 0.
\frac{-14\times 3}{\frac{0\times 336+1\times 5-0\times 609}{0.4}}
Subtract 0 from -14 to get -14.
\frac{-42}{\frac{0\times 336+1\times 5-0\times 609}{0.4}}
Multiply -14 and 3 to get -42.
\frac{-42}{\frac{0+5-0\times 609}{0.4}}
Multiply 0 and 336 to get 0. Multiply 1 and 5 to get 5.
\frac{-42}{\frac{5-0\times 609}{0.4}}
Add 0 and 5 to get 5.
\frac{-42}{\frac{5-0}{0.4}}
Multiply 0 and 609 to get 0.
\frac{-42}{\frac{5}{0.4}}
Subtract 0 from 5 to get 5.
\frac{-42}{\frac{50}{4}}
Expand \frac{5}{0.4} by multiplying both numerator and the denominator by 10.
\frac{-42}{\frac{25}{2}}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
-42\times \frac{2}{25}
Divide -42 by \frac{25}{2} by multiplying -42 by the reciprocal of \frac{25}{2}.
\frac{-42\times 2}{25}
Express -42\times \frac{2}{25} as a single fraction.
\frac{-84}{25}
Multiply -42 and 2 to get -84.
-\frac{84}{25}
Fraction \frac{-84}{25} can be rewritten as -\frac{84}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}