Evaluate
\frac{685}{841}\approx 0.81450654
Factor
\frac{5 \cdot 137}{29 ^ {2}} = 0.8145065398335315
Share
Copied to clipboard
\frac{130321+\frac{1}{4}}{20^{4}+\frac{1}{4}}
Calculate 19 to the power of 4 and get 130321.
\frac{\frac{521284}{4}+\frac{1}{4}}{20^{4}+\frac{1}{4}}
Convert 130321 to fraction \frac{521284}{4}.
\frac{\frac{521284+1}{4}}{20^{4}+\frac{1}{4}}
Since \frac{521284}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{521285}{4}}{20^{4}+\frac{1}{4}}
Add 521284 and 1 to get 521285.
\frac{\frac{521285}{4}}{160000+\frac{1}{4}}
Calculate 20 to the power of 4 and get 160000.
\frac{\frac{521285}{4}}{\frac{640000}{4}+\frac{1}{4}}
Convert 160000 to fraction \frac{640000}{4}.
\frac{\frac{521285}{4}}{\frac{640000+1}{4}}
Since \frac{640000}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{521285}{4}}{\frac{640001}{4}}
Add 640000 and 1 to get 640001.
\frac{521285}{4}\times \frac{4}{640001}
Divide \frac{521285}{4} by \frac{640001}{4} by multiplying \frac{521285}{4} by the reciprocal of \frac{640001}{4}.
\frac{521285\times 4}{4\times 640001}
Multiply \frac{521285}{4} times \frac{4}{640001} by multiplying numerator times numerator and denominator times denominator.
\frac{521285}{640001}
Cancel out 4 in both numerator and denominator.
\frac{685}{841}
Reduce the fraction \frac{521285}{640001} to lowest terms by extracting and canceling out 761.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}