Solve for n
n=16
n=25
Share
Copied to clipboard
\left(120-\left(n-1\right)\times 3\right)n=600\times 2
Multiply both sides by 2.
\left(120-\left(3n-3\right)\right)n=600\times 2
Use the distributive property to multiply n-1 by 3.
\left(120-3n-\left(-3\right)\right)n=600\times 2
To find the opposite of 3n-3, find the opposite of each term.
\left(120-3n+3\right)n=600\times 2
The opposite of -3 is 3.
\left(123-3n\right)n=600\times 2
Add 120 and 3 to get 123.
123n-3n^{2}=600\times 2
Use the distributive property to multiply 123-3n by n.
123n-3n^{2}=1200
Multiply 600 and 2 to get 1200.
123n-3n^{2}-1200=0
Subtract 1200 from both sides.
-3n^{2}+123n-1200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-123±\sqrt{123^{2}-4\left(-3\right)\left(-1200\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 123 for b, and -1200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-123±\sqrt{15129-4\left(-3\right)\left(-1200\right)}}{2\left(-3\right)}
Square 123.
n=\frac{-123±\sqrt{15129+12\left(-1200\right)}}{2\left(-3\right)}
Multiply -4 times -3.
n=\frac{-123±\sqrt{15129-14400}}{2\left(-3\right)}
Multiply 12 times -1200.
n=\frac{-123±\sqrt{729}}{2\left(-3\right)}
Add 15129 to -14400.
n=\frac{-123±27}{2\left(-3\right)}
Take the square root of 729.
n=\frac{-123±27}{-6}
Multiply 2 times -3.
n=-\frac{96}{-6}
Now solve the equation n=\frac{-123±27}{-6} when ± is plus. Add -123 to 27.
n=16
Divide -96 by -6.
n=-\frac{150}{-6}
Now solve the equation n=\frac{-123±27}{-6} when ± is minus. Subtract 27 from -123.
n=25
Divide -150 by -6.
n=16 n=25
The equation is now solved.
\left(120-\left(n-1\right)\times 3\right)n=600\times 2
Multiply both sides by 2.
\left(120-\left(3n-3\right)\right)n=600\times 2
Use the distributive property to multiply n-1 by 3.
\left(120-3n-\left(-3\right)\right)n=600\times 2
To find the opposite of 3n-3, find the opposite of each term.
\left(120-3n+3\right)n=600\times 2
The opposite of -3 is 3.
\left(123-3n\right)n=600\times 2
Add 120 and 3 to get 123.
123n-3n^{2}=600\times 2
Use the distributive property to multiply 123-3n by n.
123n-3n^{2}=1200
Multiply 600 and 2 to get 1200.
-3n^{2}+123n=1200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3n^{2}+123n}{-3}=\frac{1200}{-3}
Divide both sides by -3.
n^{2}+\frac{123}{-3}n=\frac{1200}{-3}
Dividing by -3 undoes the multiplication by -3.
n^{2}-41n=\frac{1200}{-3}
Divide 123 by -3.
n^{2}-41n=-400
Divide 1200 by -3.
n^{2}-41n+\left(-\frac{41}{2}\right)^{2}=-400+\left(-\frac{41}{2}\right)^{2}
Divide -41, the coefficient of the x term, by 2 to get -\frac{41}{2}. Then add the square of -\frac{41}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-41n+\frac{1681}{4}=-400+\frac{1681}{4}
Square -\frac{41}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-41n+\frac{1681}{4}=\frac{81}{4}
Add -400 to \frac{1681}{4}.
\left(n-\frac{41}{2}\right)^{2}=\frac{81}{4}
Factor n^{2}-41n+\frac{1681}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{41}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
n-\frac{41}{2}=\frac{9}{2} n-\frac{41}{2}=-\frac{9}{2}
Simplify.
n=25 n=16
Add \frac{41}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}