Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1-x\right)^{3}+\left(1+x\right)^{3}=28\times 2
Multiply both sides by 2.
1-3x+3x^{2}-x^{3}+\left(1+x\right)^{3}=28\times 2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-x\right)^{3}.
1-3x+3x^{2}-x^{3}+1+3x+3x^{2}+x^{3}=28\times 2
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x\right)^{3}.
2-3x+3x^{2}-x^{3}+3x+3x^{2}+x^{3}=28\times 2
Add 1 and 1 to get 2.
2+3x^{2}-x^{3}+3x^{2}+x^{3}=28\times 2
Combine -3x and 3x to get 0.
2+6x^{2}-x^{3}+x^{3}=28\times 2
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
2+6x^{2}=28\times 2
Combine -x^{3} and x^{3} to get 0.
2+6x^{2}=56
Multiply 28 and 2 to get 56.
2+6x^{2}-56=0
Subtract 56 from both sides.
-54+6x^{2}=0
Subtract 56 from 2 to get -54.
-9+x^{2}=0
Divide both sides by 6.
\left(x-3\right)\left(x+3\right)=0
Consider -9+x^{2}. Rewrite -9+x^{2} as x^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
To find equation solutions, solve x-3=0 and x+3=0.
\left(1-x\right)^{3}+\left(1+x\right)^{3}=28\times 2
Multiply both sides by 2.
1-3x+3x^{2}-x^{3}+\left(1+x\right)^{3}=28\times 2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-x\right)^{3}.
1-3x+3x^{2}-x^{3}+1+3x+3x^{2}+x^{3}=28\times 2
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x\right)^{3}.
2-3x+3x^{2}-x^{3}+3x+3x^{2}+x^{3}=28\times 2
Add 1 and 1 to get 2.
2+3x^{2}-x^{3}+3x^{2}+x^{3}=28\times 2
Combine -3x and 3x to get 0.
2+6x^{2}-x^{3}+x^{3}=28\times 2
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
2+6x^{2}=28\times 2
Combine -x^{3} and x^{3} to get 0.
2+6x^{2}=56
Multiply 28 and 2 to get 56.
6x^{2}=56-2
Subtract 2 from both sides.
6x^{2}=54
Subtract 2 from 56 to get 54.
x^{2}=\frac{54}{6}
Divide both sides by 6.
x^{2}=9
Divide 54 by 6 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
\left(1-x\right)^{3}+\left(1+x\right)^{3}=28\times 2
Multiply both sides by 2.
1-3x+3x^{2}-x^{3}+\left(1+x\right)^{3}=28\times 2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-x\right)^{3}.
1-3x+3x^{2}-x^{3}+1+3x+3x^{2}+x^{3}=28\times 2
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x\right)^{3}.
2-3x+3x^{2}-x^{3}+3x+3x^{2}+x^{3}=28\times 2
Add 1 and 1 to get 2.
2+3x^{2}-x^{3}+3x^{2}+x^{3}=28\times 2
Combine -3x and 3x to get 0.
2+6x^{2}-x^{3}+x^{3}=28\times 2
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
2+6x^{2}=28\times 2
Combine -x^{3} and x^{3} to get 0.
2+6x^{2}=56
Multiply 28 and 2 to get 56.
2+6x^{2}-56=0
Subtract 56 from both sides.
-54+6x^{2}=0
Subtract 56 from 2 to get -54.
6x^{2}-54=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-54\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-54\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-54\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{1296}}{2\times 6}
Multiply -24 times -54.
x=\frac{0±36}{2\times 6}
Take the square root of 1296.
x=\frac{0±36}{12}
Multiply 2 times 6.
x=3
Now solve the equation x=\frac{0±36}{12} when ± is plus. Divide 36 by 12.
x=-3
Now solve the equation x=\frac{0±36}{12} when ± is minus. Divide -36 by 12.
x=3 x=-3
The equation is now solved.