Solve for a
a=\frac{7+4\sqrt{2}i}{9}\approx 0.777777778+0.628539361i
a=\frac{-4\sqrt{2}i+7}{9}\approx 0.777777778-0.628539361i
Share
Copied to clipboard
\left(1-a\right)^{2}=2\left(2-a\right)^{2}+2\left(2a-1\right)^{2}
Multiply both sides of the equation by 2.
1-2a+a^{2}=2\left(2-a\right)^{2}+2\left(2a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-a\right)^{2}.
1-2a+a^{2}=2\left(4-4a+a^{2}\right)+2\left(2a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
1-2a+a^{2}=8-8a+2a^{2}+2\left(2a-1\right)^{2}
Use the distributive property to multiply 2 by 4-4a+a^{2}.
1-2a+a^{2}=8-8a+2a^{2}+2\left(4a^{2}-4a+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
1-2a+a^{2}=8-8a+2a^{2}+8a^{2}-8a+2
Use the distributive property to multiply 2 by 4a^{2}-4a+1.
1-2a+a^{2}=8-8a+10a^{2}-8a+2
Combine 2a^{2} and 8a^{2} to get 10a^{2}.
1-2a+a^{2}=8-16a+10a^{2}+2
Combine -8a and -8a to get -16a.
1-2a+a^{2}=10-16a+10a^{2}
Add 8 and 2 to get 10.
1-2a+a^{2}-10=-16a+10a^{2}
Subtract 10 from both sides.
-9-2a+a^{2}=-16a+10a^{2}
Subtract 10 from 1 to get -9.
-9-2a+a^{2}+16a=10a^{2}
Add 16a to both sides.
-9+14a+a^{2}=10a^{2}
Combine -2a and 16a to get 14a.
-9+14a+a^{2}-10a^{2}=0
Subtract 10a^{2} from both sides.
-9+14a-9a^{2}=0
Combine a^{2} and -10a^{2} to get -9a^{2}.
-9a^{2}+14a-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-14±\sqrt{14^{2}-4\left(-9\right)\left(-9\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 14 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-14±\sqrt{196-4\left(-9\right)\left(-9\right)}}{2\left(-9\right)}
Square 14.
a=\frac{-14±\sqrt{196+36\left(-9\right)}}{2\left(-9\right)}
Multiply -4 times -9.
a=\frac{-14±\sqrt{196-324}}{2\left(-9\right)}
Multiply 36 times -9.
a=\frac{-14±\sqrt{-128}}{2\left(-9\right)}
Add 196 to -324.
a=\frac{-14±8\sqrt{2}i}{2\left(-9\right)}
Take the square root of -128.
a=\frac{-14±8\sqrt{2}i}{-18}
Multiply 2 times -9.
a=\frac{-14+8\sqrt{2}i}{-18}
Now solve the equation a=\frac{-14±8\sqrt{2}i}{-18} when ± is plus. Add -14 to 8i\sqrt{2}.
a=\frac{-4\sqrt{2}i+7}{9}
Divide -14+8i\sqrt{2} by -18.
a=\frac{-8\sqrt{2}i-14}{-18}
Now solve the equation a=\frac{-14±8\sqrt{2}i}{-18} when ± is minus. Subtract 8i\sqrt{2} from -14.
a=\frac{7+4\sqrt{2}i}{9}
Divide -14-8i\sqrt{2} by -18.
a=\frac{-4\sqrt{2}i+7}{9} a=\frac{7+4\sqrt{2}i}{9}
The equation is now solved.
\left(1-a\right)^{2}=2\left(2-a\right)^{2}+2\left(2a-1\right)^{2}
Multiply both sides of the equation by 2.
1-2a+a^{2}=2\left(2-a\right)^{2}+2\left(2a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-a\right)^{2}.
1-2a+a^{2}=2\left(4-4a+a^{2}\right)+2\left(2a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
1-2a+a^{2}=8-8a+2a^{2}+2\left(2a-1\right)^{2}
Use the distributive property to multiply 2 by 4-4a+a^{2}.
1-2a+a^{2}=8-8a+2a^{2}+2\left(4a^{2}-4a+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
1-2a+a^{2}=8-8a+2a^{2}+8a^{2}-8a+2
Use the distributive property to multiply 2 by 4a^{2}-4a+1.
1-2a+a^{2}=8-8a+10a^{2}-8a+2
Combine 2a^{2} and 8a^{2} to get 10a^{2}.
1-2a+a^{2}=8-16a+10a^{2}+2
Combine -8a and -8a to get -16a.
1-2a+a^{2}=10-16a+10a^{2}
Add 8 and 2 to get 10.
1-2a+a^{2}+16a=10+10a^{2}
Add 16a to both sides.
1+14a+a^{2}=10+10a^{2}
Combine -2a and 16a to get 14a.
1+14a+a^{2}-10a^{2}=10
Subtract 10a^{2} from both sides.
1+14a-9a^{2}=10
Combine a^{2} and -10a^{2} to get -9a^{2}.
14a-9a^{2}=10-1
Subtract 1 from both sides.
14a-9a^{2}=9
Subtract 1 from 10 to get 9.
-9a^{2}+14a=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9a^{2}+14a}{-9}=\frac{9}{-9}
Divide both sides by -9.
a^{2}+\frac{14}{-9}a=\frac{9}{-9}
Dividing by -9 undoes the multiplication by -9.
a^{2}-\frac{14}{9}a=\frac{9}{-9}
Divide 14 by -9.
a^{2}-\frac{14}{9}a=-1
Divide 9 by -9.
a^{2}-\frac{14}{9}a+\left(-\frac{7}{9}\right)^{2}=-1+\left(-\frac{7}{9}\right)^{2}
Divide -\frac{14}{9}, the coefficient of the x term, by 2 to get -\frac{7}{9}. Then add the square of -\frac{7}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{14}{9}a+\frac{49}{81}=-1+\frac{49}{81}
Square -\frac{7}{9} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{14}{9}a+\frac{49}{81}=-\frac{32}{81}
Add -1 to \frac{49}{81}.
\left(a-\frac{7}{9}\right)^{2}=-\frac{32}{81}
Factor a^{2}-\frac{14}{9}a+\frac{49}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{7}{9}\right)^{2}}=\sqrt{-\frac{32}{81}}
Take the square root of both sides of the equation.
a-\frac{7}{9}=\frac{4\sqrt{2}i}{9} a-\frac{7}{9}=-\frac{4\sqrt{2}i}{9}
Simplify.
a=\frac{7+4\sqrt{2}i}{9} a=\frac{-4\sqrt{2}i+7}{9}
Add \frac{7}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}