Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-9i+\left(3+i\right)}{2i}
Calculate the square root of 8+6i and get 3+i.
\frac{1+3+\left(-9+1\right)i}{2i}
Combine the real and imaginary parts in numbers 1-9i and 3+i.
\frac{4-8i}{2i}
Add 1 to 3. Add -9 to 1.
\frac{\left(4-8i\right)i}{2i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(4-8i\right)i}{-2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i-8i^{2}}{-2}
Multiply 4-8i times i.
\frac{4i-8\left(-1\right)}{-2}
By definition, i^{2} is -1.
\frac{8+4i}{-2}
Do the multiplications in 4i-8\left(-1\right). Reorder the terms.
-4-2i
Divide 8+4i by -2 to get -4-2i.
Re(\frac{1-9i+\left(3+i\right)}{2i})
Calculate the square root of 8+6i and get 3+i.
Re(\frac{1+3+\left(-9+1\right)i}{2i})
Combine the real and imaginary parts in numbers 1-9i and 3+i.
Re(\frac{4-8i}{2i})
Add 1 to 3. Add -9 to 1.
Re(\frac{\left(4-8i\right)i}{2i^{2}})
Multiply both numerator and denominator of \frac{4-8i}{2i} by imaginary unit i.
Re(\frac{\left(4-8i\right)i}{-2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4i-8i^{2}}{-2})
Multiply 4-8i times i.
Re(\frac{4i-8\left(-1\right)}{-2})
By definition, i^{2} is -1.
Re(\frac{8+4i}{-2})
Do the multiplications in 4i-8\left(-1\right). Reorder the terms.
Re(-4-2i)
Divide 8+4i by -2 to get -4-2i.
-4
The real part of -4-2i is -4.