Solve for x
x=-\frac{1-3y}{4\left(6-y\right)}
y\neq \frac{1}{3}\text{ and }y\neq 6
Solve for y
y=\frac{24x+1}{4x+3}
x\neq -\frac{3}{4}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
1-3y-4yx=-24x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1-3y-4yx+24x=0
Add 24x to both sides.
-3y-4yx+24x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-4yx+24x=-1+3y
Add 3y to both sides.
\left(-4y+24\right)x=-1+3y
Combine all terms containing x.
\left(24-4y\right)x=3y-1
The equation is in standard form.
\frac{\left(24-4y\right)x}{24-4y}=\frac{3y-1}{24-4y}
Divide both sides by -4y+24.
x=\frac{3y-1}{24-4y}
Dividing by -4y+24 undoes the multiplication by -4y+24.
x=\frac{3y-1}{4\left(6-y\right)}
Divide -1+3y by -4y+24.
x=\frac{3y-1}{4\left(6-y\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
1-3y-4yx=-24x
Multiply both sides of the equation by x.
-3y-4yx=-24x-1
Subtract 1 from both sides.
\left(-3-4x\right)y=-24x-1
Combine all terms containing y.
\left(-4x-3\right)y=-24x-1
The equation is in standard form.
\frac{\left(-4x-3\right)y}{-4x-3}=\frac{-24x-1}{-4x-3}
Divide both sides by -3-4x.
y=\frac{-24x-1}{-4x-3}
Dividing by -3-4x undoes the multiplication by -3-4x.
y=\frac{24x+1}{4x+3}
Divide -24x-1 by -3-4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}