Evaluate
\frac{2\left(y-x\right)}{x^{2}+y}
Expand
\frac{2\left(y-x\right)}{x^{2}+y}
Share
Copied to clipboard
\frac{\frac{x+y}{x+y}-\frac{2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{\frac{x+y-2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Since \frac{x+y}{x+y} and \frac{2x}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Combine like terms in x+y-2x.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-y^{2}}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x}{x+y}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{x}{x+y}}
Factor 2x+2y.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{2x}{2\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+y\right) and x+y is 2\left(x+y\right). Multiply \frac{x}{x+y} times \frac{2}{2}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y+2x}{2\left(x+y\right)}}
Since \frac{x^{2}-2x+y}{2\left(x+y\right)} and \frac{2x}{2\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}+y}{2\left(x+y\right)}}
Combine like terms in x^{2}-2x+y+2x.
\frac{\left(-x+y\right)\times 2\left(x+y\right)}{\left(x+y\right)\left(x^{2}+y\right)}
Divide \frac{-x+y}{x+y} by \frac{x^{2}+y}{2\left(x+y\right)} by multiplying \frac{-x+y}{x+y} by the reciprocal of \frac{x^{2}+y}{2\left(x+y\right)}.
\frac{2\left(-x+y\right)}{x^{2}+y}
Cancel out x+y in both numerator and denominator.
\frac{-2x+2y}{x^{2}+y}
Use the distributive property to multiply 2 by -x+y.
\frac{\frac{x+y}{x+y}-\frac{2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{\frac{x+y-2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Since \frac{x+y}{x+y} and \frac{2x}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Combine like terms in x+y-2x.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-y^{2}}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x}{x+y}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{x}{x+y}}
Factor 2x+2y.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{2x}{2\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+y\right) and x+y is 2\left(x+y\right). Multiply \frac{x}{x+y} times \frac{2}{2}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y+2x}{2\left(x+y\right)}}
Since \frac{x^{2}-2x+y}{2\left(x+y\right)} and \frac{2x}{2\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}+y}{2\left(x+y\right)}}
Combine like terms in x^{2}-2x+y+2x.
\frac{\left(-x+y\right)\times 2\left(x+y\right)}{\left(x+y\right)\left(x^{2}+y\right)}
Divide \frac{-x+y}{x+y} by \frac{x^{2}+y}{2\left(x+y\right)} by multiplying \frac{-x+y}{x+y} by the reciprocal of \frac{x^{2}+y}{2\left(x+y\right)}.
\frac{2\left(-x+y\right)}{x^{2}+y}
Cancel out x+y in both numerator and denominator.
\frac{-2x+2y}{x^{2}+y}
Use the distributive property to multiply 2 by -x+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}