Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{x+y}{x+y}-\frac{2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{\frac{x+y-2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Since \frac{x+y}{x+y} and \frac{2x}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Combine like terms in x+y-2x.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-y^{2}}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x}{x+y}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{x}{x+y}}
Factor 2x+2y.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{2x}{2\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+y\right) and x+y is 2\left(x+y\right). Multiply \frac{x}{x+y} times \frac{2}{2}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y+2x}{2\left(x+y\right)}}
Since \frac{x^{2}-2x+y}{2\left(x+y\right)} and \frac{2x}{2\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}+y}{2\left(x+y\right)}}
Combine like terms in x^{2}-2x+y+2x.
\frac{\left(-x+y\right)\times 2\left(x+y\right)}{\left(x+y\right)\left(x^{2}+y\right)}
Divide \frac{-x+y}{x+y} by \frac{x^{2}+y}{2\left(x+y\right)} by multiplying \frac{-x+y}{x+y} by the reciprocal of \frac{x^{2}+y}{2\left(x+y\right)}.
\frac{2\left(-x+y\right)}{x^{2}+y}
Cancel out x+y in both numerator and denominator.
\frac{-2x+2y}{x^{2}+y}
Use the distributive property to multiply 2 by -x+y.
\frac{\frac{x+y}{x+y}-\frac{2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+y}{x+y}.
\frac{\frac{x+y-2x}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Since \frac{x+y}{x+y} and \frac{2x}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x^{2}-xy}{x^{2}-y^{2}}}
Combine like terms in x+y-2x.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-y^{2}}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2x+2y}+\frac{x}{x+y}}
Cancel out x-y in both numerator and denominator.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{x}{x+y}}
Factor 2x+2y.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y}{2\left(x+y\right)}+\frac{2x}{2\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+y\right) and x+y is 2\left(x+y\right). Multiply \frac{x}{x+y} times \frac{2}{2}.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}-2x+y+2x}{2\left(x+y\right)}}
Since \frac{x^{2}-2x+y}{2\left(x+y\right)} and \frac{2x}{2\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x+y}{x+y}}{\frac{x^{2}+y}{2\left(x+y\right)}}
Combine like terms in x^{2}-2x+y+2x.
\frac{\left(-x+y\right)\times 2\left(x+y\right)}{\left(x+y\right)\left(x^{2}+y\right)}
Divide \frac{-x+y}{x+y} by \frac{x^{2}+y}{2\left(x+y\right)} by multiplying \frac{-x+y}{x+y} by the reciprocal of \frac{x^{2}+y}{2\left(x+y\right)}.
\frac{2\left(-x+y\right)}{x^{2}+y}
Cancel out x+y in both numerator and denominator.
\frac{-2x+2y}{x^{2}+y}
Use the distributive property to multiply 2 by -x+y.