Evaluate
\frac{1}{4}=0.25
Factor
\frac{1}{2 ^ {2}} = 0.25
Share
Copied to clipboard
\frac{\left(\frac{3}{3}-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3-1}{3}\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Subtract 1 from 3 to get 2.
\frac{\frac{2}{3}\left(\frac{5}{5}-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{2}{3}\times \frac{5-1}{5}\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}\times \frac{4}{5}\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Subtract 1 from 5 to get 4.
\frac{\frac{2\times 4}{3\times 5}\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Multiply \frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{15}\left(1-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Do the multiplications in the fraction \frac{2\times 4}{3\times 5}.
\frac{\frac{8}{15}\left(\frac{7}{7}-\frac{1}{7}\right)}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{8}{15}\times \frac{7-1}{7}}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Since \frac{7}{7} and \frac{1}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8}{15}\times \frac{6}{7}}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Subtract 1 from 7 to get 6.
\frac{\frac{8\times 6}{15\times 7}}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Multiply \frac{8}{15} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{48}{105}}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Do the multiplications in the fraction \frac{8\times 6}{15\times 7}.
\frac{\frac{16}{35}}{\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Reduce the fraction \frac{48}{105} to lowest terms by extracting and canceling out 3.
\frac{\frac{16}{35}}{\left(\frac{3}{3}+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{16}{35}}{\frac{3+1}{3}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{16}{35}}{\frac{4}{3}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Add 3 and 1 to get 4.
\frac{\frac{16}{35}}{\frac{4}{3}\left(\frac{5}{5}+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{16}{35}}{\frac{4}{3}\times \frac{5+1}{5}\left(1+\frac{1}{7}\right)}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{16}{35}}{\frac{4}{3}\times \frac{6}{5}\left(1+\frac{1}{7}\right)}
Add 5 and 1 to get 6.
\frac{\frac{16}{35}}{\frac{4\times 6}{3\times 5}\left(1+\frac{1}{7}\right)}
Multiply \frac{4}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{16}{35}}{\frac{24}{15}\left(1+\frac{1}{7}\right)}
Do the multiplications in the fraction \frac{4\times 6}{3\times 5}.
\frac{\frac{16}{35}}{\frac{8}{5}\left(1+\frac{1}{7}\right)}
Reduce the fraction \frac{24}{15} to lowest terms by extracting and canceling out 3.
\frac{\frac{16}{35}}{\frac{8}{5}\left(\frac{7}{7}+\frac{1}{7}\right)}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{16}{35}}{\frac{8}{5}\times \frac{7+1}{7}}
Since \frac{7}{7} and \frac{1}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{16}{35}}{\frac{8}{5}\times \frac{8}{7}}
Add 7 and 1 to get 8.
\frac{\frac{16}{35}}{\frac{8\times 8}{5\times 7}}
Multiply \frac{8}{5} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{16}{35}}{\frac{64}{35}}
Do the multiplications in the fraction \frac{8\times 8}{5\times 7}.
\frac{16}{35}\times \frac{35}{64}
Divide \frac{16}{35} by \frac{64}{35} by multiplying \frac{16}{35} by the reciprocal of \frac{64}{35}.
\frac{16\times 35}{35\times 64}
Multiply \frac{16}{35} times \frac{35}{64} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{64}
Cancel out 35 in both numerator and denominator.
\frac{1}{4}
Reduce the fraction \frac{16}{64} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}