Evaluate
\frac{16c}{81}
Differentiate w.r.t. c
\frac{16}{81} = 0.19753086419753085
Share
Copied to clipboard
\frac{1\times 10^{-4}c^{2}m\times 0.4\times 15^{-4}m}{4\times 10^{-9}cm^{2}}
Multiply c and c to get c^{2}.
\frac{1\times 10^{-4}c^{2}m^{2}\times 0.4\times 15^{-4}}{4\times 10^{-9}cm^{2}}
Multiply m and m to get m^{2}.
\frac{0.4\times 10^{-4}\times 15^{-4}c}{4\times 10^{-9}}
Cancel out cm^{2} in both numerator and denominator.
\frac{0.4\times 10^{5}\times 15^{-4}c}{4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{0.4\times 100000\times 15^{-4}c}{4}
Calculate 10 to the power of 5 and get 100000.
\frac{40000\times 15^{-4}c}{4}
Multiply 0.4 and 100000 to get 40000.
\frac{40000\times \frac{1}{50625}c}{4}
Calculate 15 to the power of -4 and get \frac{1}{50625}.
\frac{\frac{64}{81}c}{4}
Multiply 40000 and \frac{1}{50625} to get \frac{64}{81}.
\frac{16}{81}c
Divide \frac{64}{81}c by 4 to get \frac{16}{81}c.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{2cmm}{2531250000\times \frac{4m^{2}}{1000000000}}c^{1-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{16c}{81}c^{0})
Do the arithmetic.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{16c}{81})
For any number a except 0, a^{0}=1.
0
The derivative of a constant term is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}