Evaluate
\frac{14}{5}i=2.8i
Real Part
0
Share
Copied to clipboard
\frac{1\times 3+i+3i+i^{2}}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Multiply complex numbers 1+i and 3+i like you multiply binomials.
\frac{1\times 3+i+3i-1}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
By definition, i^{2} is -1.
\frac{3+i+3i-1}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Do the multiplications in 1\times 3+i+3i-1.
\frac{3-1+\left(1+3\right)i}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Combine the real and imaginary parts in 3+i+3i-1.
\frac{2+4i}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Do the additions in 3-1+\left(1+3\right)i.
\frac{\left(2+4i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Multiply both numerator and denominator of \frac{2+4i}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{\left(2+4i\right)\left(3+i\right)}{3^{2}-i^{2}}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+4i\right)\left(3+i\right)}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 3+2i+4i\times 3+4i^{2}}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Multiply complex numbers 2+4i and 3+i like you multiply binomials.
\frac{2\times 3+2i+4i\times 3+4\left(-1\right)}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
By definition, i^{2} is -1.
\frac{6+2i+12i-4}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Do the multiplications in 2\times 3+2i+4i\times 3+4\left(-1\right).
\frac{6-4+\left(2+12\right)i}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Combine the real and imaginary parts in 6+2i+12i-4.
\frac{2+14i}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Do the additions in 6-4+\left(2+12\right)i.
\frac{1}{5}+\frac{7}{5}i-\frac{\left(1-i\right)\left(3-i\right)}{3+i}
Divide 2+14i by 10 to get \frac{1}{5}+\frac{7}{5}i.
\frac{1}{5}+\frac{7}{5}i-\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{3+i}
Multiply complex numbers 1-i and 3-i like you multiply binomials.
\frac{1}{5}+\frac{7}{5}i-\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{3+i}
By definition, i^{2} is -1.
\frac{1}{5}+\frac{7}{5}i-\frac{3-i-3i-1}{3+i}
Do the multiplications in 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
\frac{1}{5}+\frac{7}{5}i-\frac{3-1+\left(-1-3\right)i}{3+i}
Combine the real and imaginary parts in 3-i-3i-1.
\frac{1}{5}+\frac{7}{5}i-\frac{2-4i}{3+i}
Do the additions in 3-1+\left(-1-3\right)i.
\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{2-4i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1}{5}+\frac{7}{5}i-\frac{2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)i^{2}}{10}
Multiply complex numbers 2-4i and 3-i like you multiply binomials.
\frac{1}{5}+\frac{7}{5}i-\frac{2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{1}{5}+\frac{7}{5}i-\frac{6-2i-12i-4}{10}
Do the multiplications in 2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right).
\frac{1}{5}+\frac{7}{5}i-\frac{6-4+\left(-2-12\right)i}{10}
Combine the real and imaginary parts in 6-2i-12i-4.
\frac{1}{5}+\frac{7}{5}i-\frac{2-14i}{10}
Do the additions in 6-4+\left(-2-12\right)i.
\frac{1}{5}+\frac{7}{5}i+\left(-\frac{1}{5}+\frac{7}{5}i\right)
Divide 2-14i by 10 to get \frac{1}{5}-\frac{7}{5}i.
\frac{1}{5}-\frac{1}{5}+\left(\frac{7}{5}+\frac{7}{5}\right)i
Combine the real and imaginary parts in numbers \frac{1}{5}+\frac{7}{5}i and -\frac{1}{5}+\frac{7}{5}i.
\frac{14}{5}i
Add \frac{1}{5} to -\frac{1}{5}. Add \frac{7}{5} to \frac{7}{5}.
Re(\frac{1\times 3+i+3i+i^{2}}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Multiply complex numbers 1+i and 3+i like you multiply binomials.
Re(\frac{1\times 3+i+3i-1}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
By definition, i^{2} is -1.
Re(\frac{3+i+3i-1}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Do the multiplications in 1\times 3+i+3i-1.
Re(\frac{3-1+\left(1+3\right)i}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Combine the real and imaginary parts in 3+i+3i-1.
Re(\frac{2+4i}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Do the additions in 3-1+\left(1+3\right)i.
Re(\frac{\left(2+4i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Multiply both numerator and denominator of \frac{2+4i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(2+4i\right)\left(3+i\right)}{3^{2}-i^{2}}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+4i\right)\left(3+i\right)}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 3+2i+4i\times 3+4i^{2}}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Multiply complex numbers 2+4i and 3+i like you multiply binomials.
Re(\frac{2\times 3+2i+4i\times 3+4\left(-1\right)}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
By definition, i^{2} is -1.
Re(\frac{6+2i+12i-4}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Do the multiplications in 2\times 3+2i+4i\times 3+4\left(-1\right).
Re(\frac{6-4+\left(2+12\right)i}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Combine the real and imaginary parts in 6+2i+12i-4.
Re(\frac{2+14i}{10}-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Do the additions in 6-4+\left(2+12\right)i.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{\left(1-i\right)\left(3-i\right)}{3+i})
Divide 2+14i by 10 to get \frac{1}{5}+\frac{7}{5}i.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{3+i})
Multiply complex numbers 1-i and 3-i like you multiply binomials.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{3+i})
By definition, i^{2} is -1.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{3-i-3i-1}{3+i})
Do the multiplications in 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
Re(\frac{1}{5}+\frac{7}{5}i-\frac{3-1+\left(-1-3\right)i}{3+i})
Combine the real and imaginary parts in 3-i-3i-1.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{2-4i}{3+i})
Do the additions in 3-1+\left(-1-3\right)i.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{2-4i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{\left(2-4i\right)\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)i^{2}}{10})
Multiply complex numbers 2-4i and 3-i like you multiply binomials.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{6-2i-12i-4}{10})
Do the multiplications in 2\times 3+2\left(-i\right)-4i\times 3-4\left(-1\right)\left(-1\right).
Re(\frac{1}{5}+\frac{7}{5}i-\frac{6-4+\left(-2-12\right)i}{10})
Combine the real and imaginary parts in 6-2i-12i-4.
Re(\frac{1}{5}+\frac{7}{5}i-\frac{2-14i}{10})
Do the additions in 6-4+\left(-2-12\right)i.
Re(\frac{1}{5}+\frac{7}{5}i+\left(-\frac{1}{5}+\frac{7}{5}i\right))
Divide 2-14i by 10 to get \frac{1}{5}-\frac{7}{5}i.
Re(\frac{1}{5}-\frac{1}{5}+\left(\frac{7}{5}+\frac{7}{5}\right)i)
Combine the real and imaginary parts in numbers \frac{1}{5}+\frac{7}{5}i and -\frac{1}{5}+\frac{7}{5}i.
Re(\frac{14}{5}i)
Add \frac{1}{5} to -\frac{1}{5}. Add \frac{7}{5} to \frac{7}{5}.
0
The real part of \frac{14}{5}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}