Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(2+2i\right)}{2^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(2+2i\right)}{8}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 2+1\times \left(2i\right)+2i+2i^{2}}{8}
Multiply complex numbers 1+i and 2+2i like you multiply binomials.
\frac{1\times 2+1\times \left(2i\right)+2i+2\left(-1\right)}{8}
By definition, i^{2} is -1.
\frac{2+2i+2i-2}{8}
Do the multiplications in 1\times 2+1\times \left(2i\right)+2i+2\left(-1\right).
\frac{2-2+\left(2+2\right)i}{8}
Combine the real and imaginary parts in 2+2i+2i-2.
\frac{4i}{8}
Do the additions in 2-2+\left(2+2\right)i.
\frac{1}{2}i
Divide 4i by 8 to get \frac{1}{2}i.
Re(\frac{\left(1+i\right)\left(2+2i\right)}{2^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(2+2i\right)}{8})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 2+1\times \left(2i\right)+2i+2i^{2}}{8})
Multiply complex numbers 1+i and 2+2i like you multiply binomials.
Re(\frac{1\times 2+1\times \left(2i\right)+2i+2\left(-1\right)}{8})
By definition, i^{2} is -1.
Re(\frac{2+2i+2i-2}{8})
Do the multiplications in 1\times 2+1\times \left(2i\right)+2i+2\left(-1\right).
Re(\frac{2-2+\left(2+2\right)i}{8})
Combine the real and imaginary parts in 2+2i+2i-2.
Re(\frac{4i}{8})
Do the additions in 2-2+\left(2+2\right)i.
Re(\frac{1}{2}i)
Divide 4i by 8 to get \frac{1}{2}i.
0
The real part of \frac{1}{2}i is 0.