Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{8-8i}{1-i}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Calculate 1+i to the power of 7 and get 8-8i.
\frac{\left(8-8i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Multiply both numerator and denominator of \frac{8-8i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{16}{2}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Do the multiplications in \frac{\left(8-8i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
8+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Divide 16 by 2 to get 8.
8+\frac{8+8i}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Calculate 1-i to the power of 7 and get 8+8i.
8+\frac{\left(8+8i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Multiply both numerator and denominator of \frac{8+8i}{1+i} by the complex conjugate of the denominator, 1-i.
8+\frac{16}{2}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Do the multiplications in \frac{\left(8+8i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
8+8\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i}
Divide 16 by 2 to get 8.
8+8\times \frac{\left(3-4i\right)\left(-16+16i\right)}{4+3i}
Calculate 2+2i to the power of 3 and get -16+16i.
8+8\times \frac{16+112i}{4+3i}
Multiply 3-4i and -16+16i to get 16+112i.
8+8\times \frac{\left(16+112i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Multiply both numerator and denominator of \frac{16+112i}{4+3i} by the complex conjugate of the denominator, 4-3i.
8+8\times \frac{400+400i}{25}
Do the multiplications in \frac{\left(16+112i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}.
8+8\left(16+16i\right)
Divide 400+400i by 25 to get 16+16i.
8+\left(128+128i\right)
Multiply 8 and 16+16i to get 128+128i.
136+128i
Add 8 and 128+128i to get 136+128i.
Re(\frac{8-8i}{1-i}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Calculate 1+i to the power of 7 and get 8-8i.
Re(\frac{\left(8-8i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Multiply both numerator and denominator of \frac{8-8i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{16}{2}+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Do the multiplications in \frac{\left(8-8i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(8+\frac{\left(1-i\right)^{7}}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Divide 16 by 2 to get 8.
Re(8+\frac{8+8i}{1+i}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Calculate 1-i to the power of 7 and get 8+8i.
Re(8+\frac{\left(8+8i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Multiply both numerator and denominator of \frac{8+8i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(8+\frac{16}{2}\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Do the multiplications in \frac{\left(8+8i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(8+8\times \frac{\left(3-4i\right)\left(2+2i\right)^{3}}{4+3i})
Divide 16 by 2 to get 8.
Re(8+8\times \frac{\left(3-4i\right)\left(-16+16i\right)}{4+3i})
Calculate 2+2i to the power of 3 and get -16+16i.
Re(8+8\times \frac{16+112i}{4+3i})
Multiply 3-4i and -16+16i to get 16+112i.
Re(8+8\times \frac{\left(16+112i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
Multiply both numerator and denominator of \frac{16+112i}{4+3i} by the complex conjugate of the denominator, 4-3i.
Re(8+8\times \frac{400+400i}{25})
Do the multiplications in \frac{\left(16+112i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}.
Re(8+8\left(16+16i\right))
Divide 400+400i by 25 to get 16+16i.
Re(8+\left(128+128i\right))
Multiply 8 and 16+16i to get 128+128i.
Re(136+128i)
Add 8 and 128+128i to get 136+128i.
136
The real part of 136+128i is 136.