Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i}{2-3i}
Calculate 1+i to the power of 2 and get 2i.
\frac{2i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+3i.
\frac{-6+4i}{13}
Do the multiplications in \frac{2i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
-\frac{6}{13}+\frac{4}{13}i
Divide -6+4i by 13 to get -\frac{6}{13}+\frac{4}{13}i.
Re(\frac{2i}{2-3i})
Calculate 1+i to the power of 2 and get 2i.
Re(\frac{2i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)})
Multiply both numerator and denominator of \frac{2i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{-6+4i}{13})
Do the multiplications in \frac{2i\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
Re(-\frac{6}{13}+\frac{4}{13}i)
Divide -6+4i by 13 to get -\frac{6}{13}+\frac{4}{13}i.
-\frac{6}{13}
The real part of -\frac{6}{13}+\frac{4}{13}i is -\frac{6}{13}.