Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-8+6i-\left(2i\right)^{2}}{-3+4i}
Calculate 1+3i to the power of 2 and get -8+6i.
\frac{-8+6i-\left(-4\right)}{-3+4i}
Calculate 2i to the power of 2 and get -4.
\frac{-8+6i+4}{-3+4i}
The opposite of -4 is 4.
\frac{-4+6i}{-3+4i}
Add -8+6i and 4 to get -4+6i.
\frac{\left(-4+6i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3-4i.
\frac{36-2i}{25}
Do the multiplications in \frac{\left(-4+6i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}.
\frac{36}{25}-\frac{2}{25}i
Divide 36-2i by 25 to get \frac{36}{25}-\frac{2}{25}i.
Re(\frac{-8+6i-\left(2i\right)^{2}}{-3+4i})
Calculate 1+3i to the power of 2 and get -8+6i.
Re(\frac{-8+6i-\left(-4\right)}{-3+4i})
Calculate 2i to the power of 2 and get -4.
Re(\frac{-8+6i+4}{-3+4i})
The opposite of -4 is 4.
Re(\frac{-4+6i}{-3+4i})
Add -8+6i and 4 to get -4+6i.
Re(\frac{\left(-4+6i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)})
Multiply both numerator and denominator of \frac{-4+6i}{-3+4i} by the complex conjugate of the denominator, -3-4i.
Re(\frac{36-2i}{25})
Do the multiplications in \frac{\left(-4+6i\right)\left(-3-4i\right)}{\left(-3+4i\right)\left(-3-4i\right)}.
Re(\frac{36}{25}-\frac{2}{25}i)
Divide 36-2i by 25 to get \frac{36}{25}-\frac{2}{25}i.
\frac{36}{25}
The real part of \frac{36}{25}-\frac{2}{25}i is \frac{36}{25}.