Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(3+4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4i^{2}}{25}
Multiply complex numbers 1+2i and 3+4i like you multiply binomials.
\frac{1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{3+4i+6i-8}{25}
Do the multiplications in 1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4\left(-1\right).
\frac{3-8+\left(4+6\right)i}{25}
Combine the real and imaginary parts in 3+4i+6i-8.
\frac{-5+10i}{25}
Do the additions in 3-8+\left(4+6\right)i.
-\frac{1}{5}+\frac{2}{5}i
Divide -5+10i by 25 to get -\frac{1}{5}+\frac{2}{5}i.
Re(\frac{\left(1+2i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(3+4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4i^{2}}{25})
Multiply complex numbers 1+2i and 3+4i like you multiply binomials.
Re(\frac{1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{3+4i+6i-8}{25})
Do the multiplications in 1\times 3+1\times \left(4i\right)+2i\times 3+2\times 4\left(-1\right).
Re(\frac{3-8+\left(4+6\right)i}{25})
Combine the real and imaginary parts in 3+4i+6i-8.
Re(\frac{-5+10i}{25})
Do the additions in 3-8+\left(4+6\right)i.
Re(-\frac{1}{5}+\frac{2}{5}i)
Divide -5+10i by 25 to get -\frac{1}{5}+\frac{2}{5}i.
-\frac{1}{5}
The real part of -\frac{1}{5}+\frac{2}{5}i is -\frac{1}{5}.