Evaluate
\frac{3}{2}+\frac{1}{2}i=1.5+0.5i
Real Part
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)i^{2}}{3-i}
Multiply complex numbers 1+2i and 1-2i like you multiply binomials.
\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right)}{3-i}
By definition, i^{2} is -1.
\frac{1-2i+2i+4}{3-i}
Do the multiplications in 1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right).
\frac{1+4+\left(-2+2\right)i}{3-i}
Combine the real and imaginary parts in 1-2i+2i+4.
\frac{5}{3-i}
Do the additions in 1+4+\left(-2+2\right)i.
\frac{5\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{5\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 3+5i}{10}
Multiply 5 times 3+i.
\frac{15+5i}{10}
Do the multiplications in 5\times 3+5i.
\frac{3}{2}+\frac{1}{2}i
Divide 15+5i by 10 to get \frac{3}{2}+\frac{1}{2}i.
Re(\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)i^{2}}{3-i})
Multiply complex numbers 1+2i and 1-2i like you multiply binomials.
Re(\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right)}{3-i})
By definition, i^{2} is -1.
Re(\frac{1-2i+2i+4}{3-i})
Do the multiplications in 1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right).
Re(\frac{1+4+\left(-2+2\right)i}{3-i})
Combine the real and imaginary parts in 1-2i+2i+4.
Re(\frac{5}{3-i})
Do the additions in 1+4+\left(-2+2\right)i.
Re(\frac{5\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{5}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{5\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 3+5i}{10})
Multiply 5 times 3+i.
Re(\frac{15+5i}{10})
Do the multiplications in 5\times 3+5i.
Re(\frac{3}{2}+\frac{1}{2}i)
Divide 15+5i by 10 to get \frac{3}{2}+\frac{1}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}+\frac{1}{2}i is \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}