Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)i^{2}}{3-i}
Multiply complex numbers 1+2i and 1-2i like you multiply binomials.
\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right)}{3-i}
By definition, i^{2} is -1.
\frac{1-2i+2i+4}{3-i}
Do the multiplications in 1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right).
\frac{1+4+\left(-2+2\right)i}{3-i}
Combine the real and imaginary parts in 1-2i+2i+4.
\frac{5}{3-i}
Do the additions in 1+4+\left(-2+2\right)i.
\frac{5\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{5\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 3+5i}{10}
Multiply 5 times 3+i.
\frac{15+5i}{10}
Do the multiplications in 5\times 3+5i.
\frac{3}{2}+\frac{1}{2}i
Divide 15+5i by 10 to get \frac{3}{2}+\frac{1}{2}i.
Re(\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)i^{2}}{3-i})
Multiply complex numbers 1+2i and 1-2i like you multiply binomials.
Re(\frac{1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right)}{3-i})
By definition, i^{2} is -1.
Re(\frac{1-2i+2i+4}{3-i})
Do the multiplications in 1\times 1+1\times \left(-2i\right)+2i\times 1+2\left(-2\right)\left(-1\right).
Re(\frac{1+4+\left(-2+2\right)i}{3-i})
Combine the real and imaginary parts in 1-2i+2i+4.
Re(\frac{5}{3-i})
Do the additions in 1+4+\left(-2+2\right)i.
Re(\frac{5\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{5}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{5\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 3+5i}{10})
Multiply 5 times 3+i.
Re(\frac{15+5i}{10})
Do the multiplications in 5\times 3+5i.
Re(\frac{3}{2}+\frac{1}{2}i)
Divide 15+5i by 10 to get \frac{3}{2}+\frac{1}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}+\frac{1}{2}i is \frac{3}{2}.